欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 公文素材 > 范文素材 > 平行線性質(zhì)

平行線性質(zhì)

網(wǎng)站:公文素材庫 | 時間:2019-05-22 10:32:16 | 移動端:平行線性質(zhì)

第一篇:平行線的性質(zhì)

《平行線的性質(zhì)》第一課時教學反思

這節(jié)課通過復(fù)習這節(jié)課平行線的判定,利用逆向思維提出問題,引導(dǎo)學生探究。本節(jié)課最主要的環(huán)節(jié)是平行線性質(zhì)的探究過程,事先讓學生準備好作業(yè)本紙,三角板,在上課時學生通過自主畫圖進行探索,得到猜想,再通過驗證發(fā)現(xiàn)結(jié)論。計劃在學生充分活動的基礎(chǔ)上,由學生自己發(fā)現(xiàn)問題的結(jié)論,讓學生感受成功的喜悅,增強學習的興趣和自信心。但沒有想到的是有的同學畫平行線不準,有的度量角有誤差,他們沒有按教師的預(yù)設(shè)得出正確結(jié)論,當時我深感困惑,不知該不該向他們做出解釋,做吧,教學內(nèi)容不能如期完成,不做吧,他們的結(jié)論與平行線的性質(zhì)相悖?這樣的探究活動是否弊大于利?再說量角時有的同學只量了兩個角然后利用對頂角、鄰補角的關(guān)系算出其它角,而有的同學將八個角一一度量,這形成了時間上的差異,為此,教師是否應(yīng)該提醒學生只量其中幾個角?傊,

我總感覺大部分學生探索的積極性不高,是否因為結(jié)論容易得出而無需探究,還是問題設(shè)置的不合理?

在困惑之余,回首整節(jié)課,教學過程中體現(xiàn)了新課改理念下的“三大轉(zhuǎn)變”: ① 教的轉(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導(dǎo)者、合作者與共同研究者。在引導(dǎo)學生畫圖、測量、猜測、推理得出結(jié)論。

② 學的轉(zhuǎn)變:學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。

③ 課堂氛圍的轉(zhuǎn)變:整節(jié)課以 “流暢、開放、合作”為特征,教師對學生的思維活動減少干預(yù),教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

第二篇:平行線性質(zhì)

平行線性質(zhì)

平行線的性質(zhì)

1.兩直線平行,同位角相等。

2.兩直線平行,內(nèi)錯角相等。

3.兩直線平行,同旁內(nèi)角互補。

4.在同一平面內(nèi)的兩線平行并且不在一條直線上的直線。

有關(guān)平行線:

1.平行線的定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。

如:ab平行于cd,寫作ab∥cd

2.平行公理:過直線外一點有且只有一條直線與已知直線平行。

3.平行公理的推論(平行的傳遞性):

平行同一直線的兩直線平行。

∵a∥c,c∥b

∴a∥b

平行線的判定:

1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。

簡單說成:同位角相等,兩直線平行。

2.兩條直線被第三條所截,如果內(nèi)錯角相等,那么這兩條直線平行。

簡單說成:內(nèi)錯角相等,兩直線平行。

3.兩條直線被第三條所截,如果同旁內(nèi)角互補,那么這兩條直線平行。

簡單說成:同旁內(nèi)角互補,兩直線平行。

平行線的性質(zhì):1.兩條平行線被第三條直線所截,同位角相等.

簡單說成:兩直線平行,同位角相等。

2.兩條平行線被第三條直線所截,同旁內(nèi)角互補.

簡單說成:兩直線平行,同旁內(nèi)角互補。

3.兩條平行線被第三條直線所截,內(nèi)錯角相等.

簡單說成:兩直線平行,內(nèi)錯角相等。

兩個角的數(shù)量關(guān)系兩直線的位置關(guān)系:

垂直于同一直線的兩條直線互相平行。

平行線間的距離,處處相等。

如果兩個角的兩邊分別平行,那么這兩個角相等或互補。

基本規(guī)律

1.平行線的性質(zhì)和判定中的條件和結(jié)論恰好相反。

2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。

3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。

2

平行線的性質(zhì)

1.兩直線平行,同位角相等。

2.兩直線平行,內(nèi)錯角相等。

3.兩直線平行,同旁內(nèi)角互補。

4.在同一平面內(nèi)的兩線平行并且不在一條直線上的直線。

有關(guān)平行線:

1.平行線的定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。

如:ab平行于cd,寫作ab∥cd

2.平行公理:過直線外一點有且只有一條直線與已知直線平行。

3.平行公理的推論(平行的傳遞性):

平行同一直線的兩直線平行。

∵a∥c,c∥b

∴a∥b

平行線的判定:

1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。

簡單說成:同位角相等,兩直線平行。

2.兩條直線被第三條所截,如果內(nèi)錯角相等,那么這兩條直線平行。

簡單說成:內(nèi)錯角相等,兩直線平行。

3.兩條直線被第三條所截,如果同旁內(nèi)角互補,那么這兩條直線平行。

簡單說成:同旁內(nèi)角互補,兩直線平行。

平行線的性質(zhì):1.兩條平行線被第三條直線所截,同位角相等.

簡單說成:兩直線平行,同位角相等。

2.兩條平行線被第三條直線所截,同旁內(nèi)角互補.

簡單說成:兩直線平行,同旁內(nèi)角互補。

3.兩條平行線被第三條直線所截,內(nèi)錯角相等.

簡單說成:兩直線平行,內(nèi)錯角相等。

兩個角的數(shù)量關(guān)系兩直線的位置關(guān)系:

垂直于同一直線的兩條直線互相平行。

平行線間的距離,處處相等。

如果兩個角的兩邊分別平行,那么這兩個角相等或互補。

基本規(guī)律

1.平行線的性質(zhì)和判定中的條件和結(jié)論恰好相反。

2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。

3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。

第三篇:平行線性質(zhì)

孔子教育文化輔導(dǎo)學校

5.3平行線的性質(zhì)

【知識點】

平行線具有性質(zhì):

性質(zhì)1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

性質(zhì)2 兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。

性質(zhì)3 兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。

同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。

判斷一件事情的語句叫做命題。

【典型例題】

1、如圖,已知a∥b,c、d都是a、b的截線,∠1=80°,∠5=70°,∠2、∠3、∠4各是多少度?為什么? c

a

b12345d

(2)已知:ab∥ef,∠f=78°時,∠3、∠4各等于多少度?為什么?

a

e12bcd34f

3、如圖,一條公路兩次拐彎后,和原來的方向相同,也就是拐彎前后的兩條路互相平行,第一次拐的角

∠b是142°,第二次拐的角∠c是多少度?為什么?

c

4、如圖,ad是∠eac的平分線,ad∥bc,∠b=(更多好范文請關(guān)注:Wm.7334dd.com)30°,你能算出

∠ead、∠dac、∠c的度數(shù)嗎?

eb

ad

bc 5、如圖,ab∥a′b′,bc∥b′c′,bc交a′b′于點d,∠b與∠b′有什么關(guān)系?為什么?

a

a′

bd c

c′b′

【模擬試題】

一、選擇題

(1)兩直線被第三條直線所截,則()

a、同位角相等b、內(nèi)錯角相等 c、同旁內(nèi)角互補d、以上都不對

(2)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角()

(第1頁,共4頁)

a、相等b、互補c、相等或互補d、這兩個角無數(shù)量關(guān)系 (3)如圖,下列判斷不正確的是() a、∵∠1=∠2∴ ∠ 3= ∠ 4b、 ∵∠2=∠5 ∴ ∠ 6= ∠ 7

c、 ∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2d、 ∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2

4.如圖a所示,ab∥cd,則與∠1相等的角(∠1除外)共有()

a.5個b.4個c.3個d.2個

ac

b

d

a

acedfb

d

(a)(b)(c)

5.如圖b所示,已知de∥bc,cd是∠acb的平分線,∠b=72°,∠acb=40°,?那么∠bdc等于()a.78°b.90°c.88°d.92°

6.下列說法:①兩條直線平行,同旁內(nèi)角互補;②同位角相等,兩直線平行;?③內(nèi)錯角相等,兩直線平行;

④垂直于同一直線的兩直線平行,其中是平行線的性質(zhì)的是()a.①b.②和③c.④d.①和④

7.若兩條平行線被第三條直線所截,則一組同位角的平分線互相()a.垂直b.平行c.重合d.相交

8.如圖c所示,cd∥ab,oe平分∠aod,of⊥oe,∠d=50°,則∠bof為()a.35°b.30°c.25°d.20°9.如圖d所示,ab∥cd,則∠a+∠e+∠f+∠c等于()

a.180°b.360°c.540°d.720°

d

ef

b

f

e

g

(d)(e)

10.如圖e所示,ab∥ef∥cd,eg∥bd,則圖中與∠1相等的角(∠1除外)共有()?a.6個b.5個c.4個d.3個 二、填空

1.如圖1,已知∠1 = 100°,ab∥cd,則∠2 =,∠3 =,∠4 =. 2.如圖2,直線ab、cd被ef所截,若∠1 =∠2,則∠aef +∠cfe =.c f 1 bb ed df

b c a b d

圖1 圖2 (第2頁,共4頁)圖

4 圖3

3.如圖3所示

(1)若ef∥ac,則∠a +∠= 180°,∠f + ∠= 180°(). (2)若∠2 =∠,則ae∥bf.(3)若∠a +∠= 180°,則ae∥bf. 4.如圖4,ab∥cd,∠2 = 2∠1,則∠2 =.

5.如圖5,ab∥cd,eg⊥ab于g,∠1 = 50°,則∠e =.

e c

l1

af 2 b f g

l2d

f d c c a g

圖7 圖8 圖6圖5

6.如圖6,直線l1∥l2,ab⊥l1于o,bc與l2交于e,∠1 = 43°,則∠2 =. 7.如圖7,ab∥cd,ac⊥bc,圖中與∠cab互余的角有. 8.如圖8,ab∥ef∥cd,eg∥bd,則圖中與∠1相等的角(不包括∠1)共有個. 三、解答下列各題

9.如圖9,已知∠abe +∠deb = 180°,∠1 =∠2,求證:∠f =∠g.a(chǎn) cf

d

圖9 10.如圖10,de∥bc,∠d∶∠dbc = 2∶1,∠1 =∠2,求∠deb的度數(shù).

e

b c

圖10

11.如圖11,已知ab∥cd,試再添上一個條件,使∠1 =∠2成立.(要求給出兩個以上答案,并選擇其中一個加以證明)

be

c d

12.如圖12,∠abd和∠bdc的平分線交于e,be交cd于點f,∠1 +∠2 = 90°.圖 11

求證:(1)ab∥cd;(2)∠2 +∠3 = 90°.

b a

d c f 四、探索發(fā)現(xiàn):

(第3頁,共4頁)

圖12

如圖所示,已知ab∥cd,分別探索下列四個圖形中∠p與∠a,∠c的關(guān)系,?請你從所得的四個關(guān)系中任選一個加以說明.

ap

b

a

pc

d

b

ac

pbd

ac

p

bd

(1)(2)(3)(4) 五、中考題與競賽題:

1.(201*.河南)如圖a所示,已知ab∥cd,直線ef分別交ab,cd于e,f,eg?平分∠bef,若∠1=72°,則∠2=_______.

ac

e

b

a

d

e

bd

c

(a)(b)

2.(201*.哈爾濱)如圖b所示,已知直線ab,cd被直線ef所截,若∠1=∠2,?則∠aef+∠cfe=________.

(第4頁,共4頁)

第四篇:平行線的性質(zhì)

平行線的性質(zhì)

(1)知識與技能:

探索平行線的性質(zhì)定理,并掌握它們的圖形語言、文字語言、符號語言;會用平行線的性質(zhì)定理進行簡單的計算、證明。

(2)過程與方法:

在定理的學習中,鍛煉觀察能力,嘗試與他人合作開展討論、研究,并表達自己的見解。

(3)情感態(tài)度、價值觀:

在課堂練習中,體驗幾何與實際生活的密切聯(lián)系。

教學重點:平行線的性質(zhì)。

教學難點:平行線的性質(zhì)定理與判定定理的區(qū)別。

教學模式:發(fā)現(xiàn)教學模式。

教學方法:直觀教學法、發(fā)現(xiàn)教學法、主體互動法。

教學手段:計算機輔助教學。

教學過程:

教學環(huán)節(jié)

教師活動

學生活動

教學意圖

復(fù)習提問

復(fù)習提問:判定兩直線平行的方法有哪些?怎樣用符號語言表述?

思考、回答

了解學生的認知基礎(chǔ),讓全體學生對前一節(jié)的內(nèi)容進行回顧,并為新課的學習做準備。進行新課

【大屏幕】請每位同學利用手中的條格紙,任意選取其中的兩條線作l1、l2,再隨意畫一條直線l3與l1、l2相交,用量角器量得圖中的八個角,并填表(見附錄1)隨后同桌同學交換,再次測量、填表。

關(guān)注:對于沒有帶量角器的學生,鼓勵他們在無需測量的情況下,找出圖中各角的度量關(guān)系。

畫圖、測量、填表

思考、動手嘗試,方法可能多種多樣

激發(fā)學生探究數(shù)學問題的興趣,使學生獲得較強的感性認識,便于探索兩直線平行的性質(zhì)定理。關(guān)注學生的實際操作,以及操作中的思考和學生學習數(shù)學的興趣。

給學生留有充分的探索和交流的空間,鼓勵學生利用多種方法探索,這對于發(fā)展學生的空間觀念,理解平行線的性質(zhì)是十分重要的。

【提問】能否將我們發(fā)現(xiàn)的結(jié)論給予較為準確的文字表述?

總結(jié)、表述

鍛煉學生的歸納、表達能力,鼓勵學生敢于發(fā)表自己的觀點。

【大屏幕】平行線的性質(zhì):定理1.兩條平行線被第三條直線所截,同位角相等。簡言之: 兩直線平行,同位角相等。

定理2.兩條平行線被第三條直線所截,內(nèi)錯角相等。簡言之: 兩直線平行,內(nèi)錯角相等。定理3.兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡言之: 兩直線平行,同旁內(nèi)角互補。

【提問】討論這些性質(zhì)定理與前面所學的判定定理有什么不同?

理解、記憶

思考、討論、回答

進行文字語言的規(guī)范。

避免出現(xiàn)概念的混淆,滲透“命題” 與“逆命題”的概念,突破本節(jié)課的難點避免出現(xiàn)概念的混淆,突破本節(jié)課的難點。

【提問】回憶平行線判定定理的符號語言的表述,參照附錄1的圖形,將上述性質(zhì)定理怎樣用符號語言表達出呢?

【大屏幕】符號語言:(不唯一)

性質(zhì)定理1.∵l1∥l2∴∠1=∠5 (兩直線平行,同位角相等)

性質(zhì)定理1.∵l1∥l2∴∠3=∠5 (兩直線平行,內(nèi)錯角相等)

性質(zhì)定理1.∵l1∥l2

∴∠3+∠6=180o (兩直線平行,同旁內(nèi)角互補)

思考、一位同學板書。

觀察、理解

為今后進一步學習推理打基礎(chǔ),并進行符號語言的規(guī)范。

【提問】我們能否使用平行線的性質(zhì)定理1說出性質(zhì)定理2、3成立的道理呢?鼓勵學生使用符號語言表述推導(dǎo)過程。

【大屏幕】規(guī)范定理的推導(dǎo)過程。

思考、嘗試回答

觀察

培養(yǎng)學生的邏輯思維能力以及嚴謹?shù)闹螌W態(tài)度。逐步鍛煉學生的推理能力,并進一步鞏固對定理的理解及語言的規(guī)范,感受成功的喜悅,樹立學習數(shù)學的信心。

例題示范

【大屏幕】例:如圖是一塊梯形鐵片的殘余部分,量得∠a=100o,∠b=115o,梯形另外兩個角分別是多少度?

思考、嘗試運用符號語言進行推理。

要求學生會用平行線的性質(zhì)進行計算,只需算出所求的度數(shù)即可。初次計算格式不一定很完整。

趣味練習

【大屏幕】(見附錄2)

思考、討論、解釋結(jié)論

寓教于樂,進一步讓學生感受“認識來源于實踐”。

鞏固練習

【大屏幕】鞏固練習(見附錄3)

積極思考、展開討論、踴躍回答

循序漸進提高難度、提高靈活運用定理的能力,感受解決有關(guān)平行問題的關(guān)鍵,突破難點,并進一步提高用符號語言進行推理的能力。

拓展思路

【大屏幕】探究題(見附錄4)

【備注】如果時間不允許的話,該題可作為課后作業(yè),并給予簡單的提示。

猜測、討論,尋找規(guī)律

使重點中學學生的思路進一步得以拓寬,初次接觸輔助線的添加,使學生能力得以提高。課堂

小結(jié)

【提問】本節(jié)課我們學習了哪些定理?在表述這些定理時,應(yīng)注意什么呢?

回顧、歸納

將本節(jié)課知識進行回顧。

布置

作業(yè)

【大屏幕】布置作業(yè):教材p67的4、5;p68的6、7;p69的11、12

課后完成

課后能進一步鞏固,鼓勵學生去發(fā)現(xiàn)身邊的數(shù)學問題。

第五篇:平行線的性質(zhì)(一)

教案背景

課題:5.3.1平行線的性質(zhì)(一)

教學任務(wù)分析

教材分析

板書設(shè)計

教學過程設(shè)計

教學反思

來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


平行線性質(zhì)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.7334dd.com/gongwen/380882.html
相關(guān)文章