初二數(shù)學分式知識點總結(jié)
一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進一步分解。2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數(shù):三項
②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。③有一項是這兩個數(shù)的積的兩倍。
(3)當多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當?shù)淖冃,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于一次項的系數(shù).
2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:①列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;②嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.(八)分數(shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據(jù):分式的基本性質(zhì).5.通分的關(guān)鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數(shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.
10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.(九)含有字母系數(shù)的一元一次方程1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。
擴展閱讀:初中數(shù)學·分式知識點歸納
初中數(shù)學分式
一、分式的定義:
一般地,如果A,B表示兩個整數(shù),并且B中含有字母,那么式子二、與分式有關(guān)的條件
①分式有意義:分母不為0(B0)②分式無意義:分母為0(B0)③分式值為0:分子為0且分母不為0(A0B0A0B0A0B0AB叫做分式,A為分子,B為分母。
)④分式值為正或大于0:分子分母同號(或A0B0A0B0)
⑤分式值為負或小于0:分子分母異號(或)
⑥分式值為1:分子分母值相等(A=B)
⑦分式值為-1:分子分母值互為相反數(shù)(A+B=0)
三、分式的基本性質(zhì)
分式的分子和分母同乘(或除以)一個不等于0的整式,分式的值不變。字母表示:
ABACBCABABACBC,,其中A、B、C是整式,C0。
拓展:分式的符號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變,即:
ABABAB
注意:在應(yīng)用分式的基本性質(zhì)時,要注意C0這個限制條件和隱含條件B0。
四、分式的約分
1.定義:根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約去,叫做分式的約分。2.步驟:把分式分子分母因式分解,然后約去分子與分母的公因。
3.注意:①分式的分子與分母均為單項式時可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
②分子分母若為多項式,先對分子分母進行因式分解,再約分。
4.最簡分式的定義:一個分式的分子與分母沒有公因式時,叫做最簡分式!艏s分時。分子分母公因式的確定方法:
1)系數(shù)取分子、分母系數(shù)的最大公約數(shù)作為公因式的系數(shù).2)取各個公因式的最低次冪作為公因式的因式.
3)如果分子、分母是多項式,則應(yīng)先把分子、分母分解因式,然后判斷公因式.
五、分式的通分
1.定義:把幾個異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。(依據(jù):分式的基本性質(zhì)!)2.最簡公分母:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。◆通分時,最簡公分母的確定方法:
1.系數(shù)取各個分母系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).2.取各個公因式的最高次冪作為最簡公分母的因式.
3.如果分母是多項式,則應(yīng)先把每個分母分解因式,然后判斷最簡公分母.
第1頁/共2頁
六、分式的四則運算與分式的乘方①分式的乘除法法則:
分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。式子表示為:分式除以分式:把除式的分子、分母顛倒位置后,與被除式相乘。式子表示為:
a②分式的乘方:把分子、分母分別乘方。式子表示為:bnababcdcdacbdabdc
adbc
abnn
acbcabcbd③分式的加減法則:同分母分式加減法:分母不變,把分子相加減。式子表示為:
異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為:
abcd
adbc整式與分式加減法:可以把整式當作一個整數(shù),整式前面是負號,要加括號,看作是分母為1的分式,
再通分。
④分式的加、減、乘、除、乘方的混合運算的運算順序
先乘方、再乘除、后加減,同級運算中,誰在前先算誰,有括號的先算括號里面的,也要注意靈活,提高解題質(zhì)量。注意:在運算過程中,要明確每一步變形的目的和依據(jù),注意解題的格式要規(guī)范,不要隨便跳步,以便查對
有無錯誤或分析出錯的原因。加減后得出的結(jié)果一定要化成最簡分式(或整式)。
七、整數(shù)指數(shù)冪①引入負整數(shù)、零指數(shù)冪后,指數(shù)的取值范圍就推廣到了全體實數(shù),并且正正整數(shù)冪的法則對對負整數(shù)指
數(shù)冪一樣適用。即:
amannaabnnmnamamnabanbnamanamn(a0)
nnaban1ana0)a01(a0)(任何不等于零的數(shù)的零次冪都等于1)
其中m,n均為整數(shù)。
八、分式方程的解的步驟:
⑴去分母,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)⑵解整式方程,得到整式方程的解。
⑶檢驗,把所得的整式方程的解代入最簡公分母中:
如果最簡公分母為0,則原方程無解,這個未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。
產(chǎn)生增根的條件是:①是得到的整式方程的解;②代入最簡公分母后值為0。
九、列分式方程基本步驟:①審仔細審題,找出等量關(guān)系。②設(shè)合理設(shè)未知數(shù)。③列根據(jù)等量關(guān)系列出方程(組)。④解解出方程(組)。注意檢驗⑤答答題。
第2頁/共2頁
友情提示:本文中關(guān)于《初二數(shù)學分式知識點總結(jié)》給出的范例僅供您參考拓展思維使用,初二數(shù)學分式知識點總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。