初二上冊(cè)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
基本概念:
1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。
常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。
2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。4、確定函數(shù)定義域的方法:
(1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);(2)關(guān)系式含有分式時(shí),分式的分母不等于零;(3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;
(5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。
函數(shù)性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常
數(shù),k≠0)。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。
3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個(gè)一次函數(shù)表達(dá)式中:
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;
當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。
圖像性質(zhì)
1.作法與圖形:(1)列表.
(2)描點(diǎn);一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。
3.函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
一次函數(shù)的圖象特征和性質(zhì):
y=kx+bb>0經(jīng)過(guò)第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過(guò)第一、二、四象限經(jīng)過(guò)第二、三、四象限經(jīng)過(guò)第二、四象限k
擴(kuò)展
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)2.求任意線段的長(zhǎng):√(x1-x2)2+(y1-y2)2
3.求兩個(gè)一次函數(shù)式圖像交點(diǎn)坐標(biāo):解兩函數(shù)式,就是解方程組4.求任意2點(diǎn)所連線段的中點(diǎn)坐標(biāo):[(x1+x2)/2,(y1+y2)/2]
5.若兩條直線y1=k1x+b1平行y2=k2x+b2,那么k1=k2,b1≠b2
6.向右平移n個(gè)單位y=k(x-n)+b
向左平移n個(gè)單位y=k(x+n)+b向上平移n個(gè)單位y=kx+b+n
向下平移n個(gè)單位y=kx+b-n
總結(jié)與前幾章的關(guān)系
1、一元一次方程與一次函數(shù)的關(guān)系
任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.2、一次函數(shù)與一元一次不等式的關(guān)系
任何一個(gè)一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b
擴(kuò)展閱讀:初二上冊(cè)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)(附加兩套習(xí)題與答案)
初中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
基本概念:1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。
2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。
4、確定函數(shù)定義域的方法:
(1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);(2)關(guān)系式含有分式時(shí),分式的分母不等于零;(3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;
(5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。函數(shù)性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0)。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。
3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個(gè)一次函數(shù)表達(dá)式中:
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。
圖像性質(zhì)
1.作法與圖形:(1)列表.
(2)描點(diǎn);一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。
3.函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
一次函數(shù)的圖象特征和性質(zhì):y=kx+bk>b>0經(jīng)過(guò)第一、二、三象b0限限象限經(jīng)過(guò)第一、二、四象限k相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.
2、一次函數(shù)與一元一次不等式的關(guān)系
任何一個(gè)一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b3B.0課堂上,李老師請(qǐng)學(xué)生畫(huà)出他行進(jìn)的路程y(千米)與行進(jìn)時(shí)間t(小時(shí))的函數(shù)圖象的示意圖,同學(xué)們畫(huà)出的圖象如圖所示,你認(rèn)為正確的是()
10.一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(2,-1)和(0,3),那么這個(gè)一次函數(shù)的解析式為()A.y=-2x+3B.y=-3x+2C.y=3x-2D.y=二、你能填得又快又對(duì)嗎?(每小題3分,共30分)
11.已知自變量為x的函數(shù)y=mx+2-m是正比例函數(shù),則m=________,該函數(shù)的解析式為_(kāi)________.
12.若點(diǎn)(1,3)在正比例函數(shù)y=kx的圖象上,則此函數(shù)的解析式為_(kāi)_______.
13.已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(1,3)和B(-1,-1),則此函數(shù)的解析式為_(kāi)________.14.若解方程x+2=3x-2得x=2,則當(dāng)x_________時(shí)直線y=x+2上的點(diǎn)在直線y=3x-2上相應(yīng)點(diǎn)的上方.
15.已知一次函數(shù)y=-x+a與y=x+b的圖象相交于點(diǎn)(m,8),則a+b=_________.
16.若一次函數(shù)y=kx+b交于y軸的負(fù)半軸,且y的值隨x的增大而減少,則k____0,b______0.(填“>”、“
23.(12分)一農(nóng)民帶了若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢(qián)備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售.售出土豆千克數(shù)與他手中持有的錢(qián)數(shù)(含備用
零錢(qián))的關(guān)系如圖所示,結(jié)合圖象回答下列問(wèn)題:(1)農(nóng)民自帶的零錢(qián)是多少?(2)降價(jià)前他每千克土豆出售的價(jià)格是多少?
(3)降價(jià)后他按每千克0.4元將剩余土豆售完,這時(shí)他手中的錢(qián)(含備用零錢(qián))是26元,問(wèn)他一共帶了多少千克土豆?
24.(10分)如圖所示的折線ABC表示從甲地向乙地打長(zhǎng)途電話所需的電話費(fèi)y(元)與通話時(shí)間t(分鐘)之間的函數(shù)關(guān)系的圖象(1)寫(xiě)出y與t之間的函數(shù)關(guān)系式.(2)通話2分鐘應(yīng)付通話費(fèi)多少元?通話7分鐘呢?
25.(12分)已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)M、N兩種型號(hào)的時(shí)裝共80套.已知做一套M型號(hào)的時(shí)裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號(hào)的時(shí)裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設(shè)生產(chǎn)M型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元.
①求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量的取值范圍;②當(dāng)M型號(hào)的時(shí)裝為多少套時(shí),能使該廠所獲利潤(rùn)最大?最大利潤(rùn)是多?
八年級(jí)一次函數(shù)測(cè)試題
班級(jí)姓名得分
一.填空(每題4分,共32分)
1.已知一個(gè)正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,4),則這個(gè)正比例函數(shù)的表達(dá)式是.2.已知一次函數(shù)y=kx+5的圖象經(jīng)過(guò)點(diǎn)(-1,2),則k=.
3.一次函數(shù)y=-2x+4的圖象與x軸交點(diǎn)坐標(biāo)是,與y軸交點(diǎn)坐標(biāo)是圖象與坐標(biāo)軸所圍成的三角形面積是.1
4.下列三個(gè)函數(shù)y=-2x,y=-x,y=(2-3)x共同點(diǎn)(1);
4(2);(3).
5.某種儲(chǔ)蓄的月利率為0.15%,現(xiàn)存入1000元,則本息和y(元)與所存月數(shù)x之間
的函數(shù)關(guān)系式是.6.寫(xiě)出同時(shí)具備下列兩個(gè)條件的一次函數(shù)表達(dá)式(寫(xiě)出一個(gè)即可).(1)y隨著x的增大而減小。(2)圖象經(jīng)過(guò)點(diǎn)(1,-3)
7.某商店出售一種瓜子,其售價(jià)y(元)與瓜子質(zhì)量x(千克)之間的關(guān)系如下表質(zhì)量x(千克)12343.60+0.207.20+0.201*.80+0.20由上表得y與x之間的關(guān)系式是.8在計(jì)算器上按照下面的程序進(jìn)行操作:
下表中的x與y分別是輸入的6個(gè)數(shù)及相應(yīng)的計(jì)算結(jié)果:
上面操作程序中所按的第三個(gè)鍵和第四個(gè)
xy-2-5-1-201*427310鍵
售價(jià)y(元)14.40+0.2…………應(yīng)是.二.選擇題(每題4分,共32分)
19.下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次
x函數(shù)的有()(A)4個(gè)(B)3個(gè)(C)2個(gè)(D)1個(gè)110.已知點(diǎn)(-4,y1),(2,y2)都在直線y=-x+2上,則y1y2大小關(guān)系是()
2(A)y1>y2(B)y1=y2(C)y1
(A)(B)(C)y(D)12.已知一次函數(shù)y=kx+b的圖象如圖所示,則k,b的符號(hào)是()
(A)k>0,b>0(B)k>0,b
19.如圖是某出租車單程收費(fèi)y(元)與行駛路程x(千米)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問(wèn)題
(1)當(dāng)行駛8千米時(shí),收費(fèi)應(yīng)為元
(2)從圖象上你能獲得哪些信息?(請(qǐng)寫(xiě)出2條)
①②(3)求出收費(fèi)y(元)與行使x(千米)(x≥3)之間的函數(shù)關(guān)系式
20.為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過(guò)6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過(guò)6立方米時(shí),不超過(guò)的部分每立方米仍按a元收費(fèi),超過(guò)的部分每立方米按c元收費(fèi),該市某戶今年9、10月份的用水量和所交水費(fèi)如下表所示:設(shè)某戶每月用水量x(立方米),應(yīng)交水費(fèi)y(元)
(1)求a,c的值
(2)當(dāng)x≤6,x≥6時(shí),分別寫(xiě)出y于x的函數(shù)
關(guān)系式
21.一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢(qián)備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售,售出的土豆千克數(shù)與他手中持有的錢(qián)數(shù)(含備用零錢(qián))的關(guān)系,如圖所示,結(jié)合圖象回答下列問(wèn)題.
(1)農(nóng)民自帶的零錢(qián)是多少?
(2)試求降價(jià)前y與x之間的關(guān)系式
(3)由表達(dá)式你能求出降價(jià)前每千克的土豆價(jià)格是多少?(4)降價(jià)后他按每千克0.4元將剩余土豆售完,這時(shí)他手中的錢(qián)(含備用零錢(qián))是26元,試問(wèn)他一共帶了多少千克土豆?
月份910用水量(m3)597.527收費(fèi)(元)(3)若該戶11月份用水量為8立方米,求該戶11月份水費(fèi)是多少元?
答案:
第一份
3.B4.C5.D6.A7.C8.B9.C10.A11.2;y=2x12.y=3x13.y=2x+114.16.
友情提示:本文中關(guān)于《初二上冊(cè)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,初二上冊(cè)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。