七年級上冊數學知識總結歸納
七年級上冊.......................................................................................................................................2
第一章有理數.......................................................................................................................2
1.1正數和負數...........................................................................................................21.2有理數...................................................................................................................21.3有理數的加減法...............................................................................................21.4有理數的乘除法................................................................................................21.5有理數的乘方.......................................................................................................2第二章整式的加減...............................................................................................................3
2.1整式.......................................................................................................................32.2整式的加減...........................................................................................................3第三章一元一次方程...........................................................................................................3
3.1從算式到方程.......................................................................................................33.2解一元一次方程(一)合并同類項與移項...............................................33.3解一元一次方程(二)去括號與去分母...................................................33.4實際問題與一元一次方程...................................................................................44.1多姿多彩的圖形...................................................................................................44.2直線、射線、線段...........................................................................................44.3角...........................................................................................................................44.4課題學習設計制作長方體形狀的包裝紙盒...................................................4
七年級上冊
第一章有理數1.1正數和負數1.2有理數
有理數:整數和分數統(tǒng)稱為有理數。
數軸:用一條直線上的點表示數,這條直線叫做數軸。相反數:只有符號不同的兩個數互為相反數。
絕對值:一般的數軸上表示數a的點與原點的距離叫做a的絕對值。一個正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0。練習:12341.3有理數的加減法有理數的加法:同號相加、異號相加、同有理數的減法:減去一個數等于加上這個數的相反數。1.4有理數的乘除法有理數的乘法:兩數相乘,同號得正異號得負,并把絕對值相乘。任何數乘倒數:成績?yōu)橛欣頂党朔M足交換律和結合律。分配律:一個數同兩個數的和相乘等于這個數分別同這兩個數相乘,再把積相加。有理數的除法:負并把絕對值相除。有理數混合運算順序:先乘除,后加減。1.5有理數的乘方乘方:求那個相同因數的積的運算叫做乘方,乘方的結果叫做冪。在乘方數,n叫做指數。讀作負數的奇次冪是負數,四則混合運算運算順序:有括號的先做括號內的運算,按小括號,中括號,大括號依次進行?茖W計數法:把一個大于n是正整數)叫做科學計數法。近似數
有效數字:效數字。練習:1__________
2面積約為(3
a的相反數是-212而小于113的整數是.0.5的相反數是,倒數是。
|x|=4,則x=。
0相加。有理數加法運算滿足交換律和結合律。
1的兩個數互為倒數。
除以一個不為0的數,等于乘以這個數的倒數。兩數相除,0除以任意一個不為0的數得0。
a的n次冪。
偶次冪是正數。正數的任何次冪都是正數。0的任何正整數次冪為1)先乘方,再乘除,最后加減。2)同級運算從左向右進行。10的數表示成a10n的形式(其中a是整數數位只有一位的數,從一個數的左邊第一個非0數字起,到末位數字止,所有的數字都是這個數的有1,1,1)、(2,4,8)、(3,9,27)……中,第149000000千米2,用科學記數法表示地球上的陸地)千米2。
)0得0。
同號得正異號得an中,a0。3)2
、、絕對值大于、-、若叫做底
、在數組(100組的三個數之和=、已知地球上的陸地面積約為、任何一個有理數的平方(A、一定是正數B、一定不是負數
C、一定大于它本身D、一定不大于它的絕對值4、計算:4×(-3)2+(-6)÷(-2)第二章整式的加減2.1整式
單項式:數或字母的乘積叫做單項式。單獨一個數或一個字母也是一個單項式。系數:單項式中數字因數叫做單項式的系數。
次數:一個單項式中,所有字母指數的和叫做這個單項式的次數。
多項式:幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。不含字母的項叫做常數項。多項式里最高項的次說叫做這個多項式的次數。整式:單項式與多項式統(tǒng)稱為整式。練習:1、已知2.2整式的加減同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。常數項是同類項。合并同類項:合并前各同類項系數的和,且字母部分不變。利用分配律去括號原理:數符號相同。數學活動整式相加減:一般的,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。練習:1、2第三章3.1從算式到方程方程:設字母為未知數,然后根據問題中的相等關系,寫出含有未知數的等式叫方程。一元一次方程:只含有一個未知數,未知數的次數都是分析實際問題中的數量關系,方法。
解方程:解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。等式的性質等式的性質練習:1、若2、鋼x厘米,可得方程為3.2解一元一次方程(一)合并同類項與移項例1:解方程解:合并同類項,得3.3解一元一次方程(二)去括號與去分母例1:解方程解:去括號,得
25a2mb和7b3na4是同類項,則mn的值是(
把多項式中的同類項合并成一項叫做合并同類項。合并同類項后,如果括號外的因數是正數,去括號后原括號內各項的系數與原來系如果括號外的因數是負數,去括號后原括號內各項的系數與原來系數符號相反。
(2xy23x2y)(6x2y3xy2)=
2x2+(-x2+3xy+2y2)-(x2-xy+2y2),其中
1。這樣的方程就一元一次方程。利用其中的相等關系列出方程,是用數學解決實際問題的一種1:等式兩邊同加(或同減)一個數(或式子)結果仍相等。2:等式兩邊同乘一個數,或同除一個不為0的數,結果仍相等。x=2是關于x的方程2x+3k-1=0的解,則k=16厘米、高為5厘米的圓柱形毛坯,設需截取邊長為。7x-2.5x+3x-1.5x=-15×4-6×36x=-78系數化為1,得x=-13
6x+6(x-201*)=150000
6x+6x-1201*=150000
)所得系數是x=
14,y=3.6厘米的的方3
、先化簡,再求值:一元一次方程。
要鍛造直徑為移項,得6x+6x=150000+1201*合并同類項,得12x=16201*系數化為1,得x=13500練習:解方程4x-3(20-x)=6x-7(9-x)3.4實際問題與一元一次方程
練習:1、甲、乙兩岸相距24海里,一艘游艇順水航行的時速為12海里,逆水航行時速為8海里,求這艘游艇的平均速度。
2、某物品的標價為132元,若以9折出售,仍可獲利10,則該物品的進價是()第四章圖形認識初步4.1多姿多彩的圖形
幾何圖形:我們把從事物中抽象出的各種圖形統(tǒng)稱為幾何圖形。展開圖:有些立體圖形是有一些平面圖形圍成的,圖形。這樣的平面圖形稱為相應立體圖形的展開圖。體:長方體、正方體、圓柱、圓錐、球等都是幾何體。幾何體也簡稱體。包圍著體的是面。面和面相交的地方形成線。線和線相交的地方是點。練習:1、長方體有個頂點,有2、下列圖形不能圍成正方體的是(
AB4.2直線、射線、線段
直線:經過兩點有且只有一條直線。簡述為,兩點確定一條直線。交點:兩條不同的直線有一個公共點我們就說這兩天直線相交,兩點的所有連線中,線段最短。簡稱,兩點之間線段最短。距離:連接兩點之間的線段長度叫做這兩點間的距離。練習:1、在同一平面內,兩條直線的位置關系有2、在直線l上順次取A、B、C三點,使得的中點,那么線段OB的長度是()4.3角
角:有公共端點的兩條射線組成的圖形叫做角。1周角=3600;1060;160
角平分線:從一個角的頂點出發(fā),把這個角分成兩個相等的角的射線叫做角平分線。余角:如果兩個角的和為900(直角),就說這兩個角互為余角。補角:如果兩個角的和等于1800(平角),就說這兩個角互為補角。注:等角的補交相等,等角的余角相等。
練習:在下午四點半鐘的時候,時針和分針所夾的角度是(4.4課題學習設計制作長方體形狀的包裝紙盒
將他們的表面適當剪開,可以展開成平面
CD這個公共點叫做他們的交點。
和兩種。
AB=5,BC=3,如果O是線段)AC4
個面。)
擴展閱讀:初中數學七年級上冊知識點總結
提分數學
提分數學七年級上知識清單
第一章有理數
一.正數和負數
⒈正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數:比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數和負數的分界線,0既不是正數,也不是負數。
二.有理數
1.有理數的概念
⑴正整數、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數)⑵正分數和負分數統(tǒng)稱為分數
⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8也是偶數,-1,-3,-5也是奇數。2.(1)凡能寫成
q(p,q為整數且p0)形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負p分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
提分數學
正整數正有理數正分數(2)有理數的分類:①按正、負分類:有理數零
負整數負有理數負分數正整數整數零②按有理數的意義來分:有理數負整數正分數分數負分數總結:①正整數、0統(tǒng)稱為非負整數(也叫自然數)②負整數、0統(tǒng)稱為非正整數③正有理數、0統(tǒng)稱為非負有理數④負有理數、0統(tǒng)稱為非正有理數
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.
三.數軸
⒈數軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;⑶同一數軸上的單位長度要統(tǒng)一;⑷數軸的三要素都是根據實際需要規(guī)定的。2.數軸上的點與有理數的關系
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大;⑵正數都大于0,負數都小于0,正數大于負數;⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
提分數學
4.數軸上特殊的最大(小)數
⑴最小的自然數是0,無最大的自然數;⑵最小的正整數是1,無最大的正整數;⑶最大的負整數是-1,無最小的負整數5.a可以表示什么數
⑴a>0表示a是正數;反之,a是正數,則a>0;⑵a提分數學
⑴一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。當a>0時,-a0,那么|a|=a;②如果a0),則x=±a;
⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負數,即
提分數學
|a|≥0;注意:|a||b|=|ab|,
abab⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)4.有理數大小的比較
⑴利用數軸比較兩個數的大。簲递S上的兩個數相比較,左邊的數總比右邊的數小,或者右邊的數總比左邊的數大
⑵利用絕對值比較兩個負數的大。簝蓚負數比較大小,絕對值大的反而;異號兩數比較大小,正數大于負數。
(3)正數的絕對值越大,這個數越大;(4)正數永遠比0大,負數永遠比0。唬5)正數大于一切負數;
(6)大數-小數>0,小數-大數<0.5.絕對值的化簡
①當a≥0時,|a|=a;②當a≤0時,|a|=-a6.已知一個數的絕對值,求這個數
一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。
六.有理數的加減法.
1.有理數的加法法則
⑴同號兩數相加,取相同的符號,并把絕對值相加;
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數的兩數相加,和為零;⑷一個數與0相加,仍得這個數。2.有理數加法的運算律⑴加法交換律:a+b=b+a⑵加法結合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:①互為相反數的兩個數先相加“相反數結合法”;
提分數學
②符號相同的兩個數先相加“同號結合法”;③分母相同的數先相加“同分母結合法”;④幾個數相加得到整數,先相加“湊整法”;⑤整數與整數、小數與小數相加“同形結合法”。3.加法性質
一個數加正數后的和比原數大;加負數后的和比原數。患0后的和等于原數。即:⑴當b>0時,a+b>a⑵當b提分數學
Ⅲ.把分母相同或便于通分的加數相結合(同分母結合法)--
313217+-+-524528321137)+(-+)+(+-)55224818原式=(--
=-1+0-
=-1
Ⅳ.既有小數又有分數的運算要統(tǒng)一后再結合(先統(tǒng)一后結合)(+0.125)-(-3
18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3
18=+3
183121-3+10-14834=(3
31112-1)+(-3)+1044883=2
12-3+102316=-3+13
=10
16617-12+41122151761)+(-)
5151122Ⅴ.把帶分數拆分后再結合(先拆分后結合)-3+10
15原式=(-3+10-12+4)+(-+
=-1+
411+1522提分數學
=-1+
815+3030=-
730Ⅵ.分組結合
2-3-4+5+6-7-8+9+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)
=0Ⅶ.先拆項后結合
(1+3+5+7+99)-(2+4+6+8+100)
七.有理數的乘除法
1.有理數的乘法法則
法則一:兩數相乘,同號得正,異號得負,并把絕對值相乘;(“同號得正,異號得負”專指“兩數相乘”的情況,如果因數超過兩個,就必須運用法則三)法則二:任何數同0相乘,都得0;
法則三:幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數;法則四:幾個數相乘,如果其中有因數為0,則積等于0.2.倒數
乘積是1的兩個數互為倒數,其中一個數叫做另一個數的倒數,用式子表示為a
1=1(a≠0),就是說aa和
111互為倒數,即a是的倒數,是a的倒數。aaa1互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么a的倒數是;倒數是本身的數
a是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.注意:①0沒有倒數;
②求假分數或真分數的倒數,只要把這個分數的分子、分母點顛倒位置即可;求帶分數的倒數時,先把帶分數化為假分數,再把分子、分母顛倒位置;
③正數的倒數是正數,負數的倒數是負數。(求一個數的倒數,不改變這個數的性質);④倒數等于它本身的數是1或-1,不包括0。3.有理數的乘法運算律
提分數學
⑴乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。即ab=ba⑵乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,在把積相加。即a(b+c)=ab+ac4.有理數的除法法則
(1)除以一個不等0的數,等于乘以這個數的倒數;注意:零不能做除數,即無意義(2)兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得05.有理數的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。
(2)有理數的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進行。
a0八.有理數的乘方
1.乘方的概念
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在a中,a叫做底數,n叫做指數。(1)a是重要的非負數,即a≥0;若a+|b|=0a=0,b=0;
0.120.01211(2)據規(guī)律2底數的小數點移動一位,平方數的小數點移動二位
101002
22n2.乘方的性質
(1)負數的奇次冪是負數,負數的偶次冪的正數;注意:當n為正奇數時:(-a)=-a或(a-b)=-(b-a),當
n為正偶數時:(-a)=a或(a-b)=(b-a).
(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
nnnnnnnn九.有理數的混合運算
做有理數的混合運算時,應注意以下運算順序:1.先乘方,再乘除,最后加減;2.同級運算,從左到右進行;
3.如有括號,先做括號內的運算,按小括號,中括號,大括號依次進行。
十.科學記數法
把一個大于10的數表示成a10的形式(其中1a10,n是正整數),這種記數法是科學記數法
-9-
n提分數學
近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原
則.
特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.
等于本身的數匯總:相反數等于本身的數:0倒數等于本身的數:1,-1絕對值等于本身的數:正數和0平方等于本身的數:0,1立方等于本身的數:0,1,-1.
第二章整式的加減
一.用字母表示數(代數初步知識)
1.代數式:用運算符號“+-÷”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式;用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。2.代數式書寫規(guī)范:
(1)數與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數與數相乘,仍應使用“”乘,不用“”乘,也不能省略乘號;(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a5應寫成5a;13(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a1應寫成a;
223(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯(lián)系,如3÷a寫成的形式;
a提分數學
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做
a-b和b-a.
出現除式時,用分數表示;
(7)若運算結果為加減的式子,當后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續(xù)整數
是:n-1、n、n+1;
(4)若b>0,則正數是:a+b,負數是:-a-b,非負數是:a,非正數是:-a.
2222222二.整式
1.單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。
2.單項式的系數:單項式中的數字因數;單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;
3.單項式的次數:一個單項式中,所有字母的指數和
4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。注意:(若a、b、c、p、q是常數)ax+bx+c和x+px+q是常見的兩個二次三項式.
5整式:單項式和多項式統(tǒng)稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.整式分類為:整式2
2單項式多項式.
注意:分母上含有字母的不是整式。
6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到。┡帕衅饋,
叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.
提分數學
三.整式的加減
1.合并同類項
2同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。
3合并同類項的法則:同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。
4合并同類項的步驟:(1)準確的找出同類項;(2)運用加法交換律,把同類項交換位置后結合在一起;(3)利用法則,把同類項的系數相加,字母和字母的指數不變;(4)寫出合并后的結果。5去括號去括號的法則:
(1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項的符號都要改變。
6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號
里的各項都要變號.
7整式的加減:進行整式的加減運算時,如果有括號先去括號,再合并同類項;整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.
8整式加減的步驟:(1)列出代數式;(2)去括號;(3)添括號(4)合并同類項。
第三章一元一次方程
1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3方程:含未知數的等式,叫方程.
4一元一次方程的概念:只含有一個未知數(元)(含未知數項的系數不是零)且未知數的指數是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)
1注意:未知數在分母中時,它的次數不能看成是1次。如3x,它不是一元一次方程。
x5解一元一次方程
提分數學
方程的解:能使方程左右兩邊相等的未知數的值叫做方程的解;注意:“方程的解就能代入”驗算!解方程:求方程的解的過程叫做解方程。
等式的性質:(1)等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數,所得結果仍是等式。
6移項
移項:方程中的某些項改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項。
移項的依據:(1)移項實際上就是對方程兩邊進行同時加減,根據是等式的性質1;(2)系數化為1實際上就是對方程兩邊同時乘除,根據是等式的性質2。
移項的作用:移項時一般把含未知數的項向左移,常數項往右移,使左邊對含未知數的項合并,右邊對常數項合并。
注意:移項時要跨越“=”號,移過的項一定要變號。
7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項、合并同類項、未知數的系數化為1;(檢驗方程的解)。
注意:去分母時不可漏乘不含分母的項。分數線有括號的作用,去掉分母后,若分子是多項式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題
列一元一次方程解應用題的基本步驟:審清題意、設未知數(元)、列出方程、解方程、寫出答案。關鍵在于抓住問題中的有關數量的相等關系,列出方程。
解決問題的策略:利用表格和示意圖幫助分析實際問題中的數量關系9列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形
提分數學
各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
10實際問題的常見類型:
(1)行程問題:路程=時間速度,時間=
路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)
(2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;
工作效率利潤,售價=標價(1-折扣);進價工作總量;
工作時間(3)利潤問題:利潤=售價-進價,利潤率=
(4)商品價格問題:售價=定價折
售價成本1100%;,利潤=售價-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積
(9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,
21222322
S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.
310.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
提分數學
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
第四章走進圖形世界
1、幾何圖形:
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。長方體、正方體、球、圓柱、
圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。長方形、正方形、三角形、圓
等都是平面圖形。
立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
2、點、線、面、體(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點;幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形圓柱柱體
棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、
生活中的立體圖形球體
(按名稱分)圓錐
椎體
提分數學
棱錐
4、棱柱及其有關概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側棱:相鄰兩個側面的交線叫做側棱。
n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
棱柱的所有側棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側面是長方形。棱柱的側面有可能是長方形,也有可能是平行四邊形。
5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。
平面圖形的認識
線段,射線,直線名稱線段射線直線
-16-
不同點延伸性不能延伸只能向一方延伸可向兩方無限延伸端點數21無聯(lián)系線段向一方延長就成射線,向兩方延長就成直線共同點都是直的線提分數學
點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示,如點A
一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB
一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB
點和直線的位置關系有兩種:
①點在直線上,或者說直線經過這個點。②點在直線外,或者說直線不經過這個點。
線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的中點到兩端點的距離相等。
(4)線段的大小關系和它們的長度的大小關系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。
M是線段AB的中點
A直線的性質
MBAM=BM=
1AB(或者AB=2AM=2BM)2(1)直線公理:經過兩個點有且只有一條直線。(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。
(5)兩條不同的直線至多有一個公共點。
經過兩點有一條直線,并且只有一條直線;兩點確定一條直線;點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
提分數學
直線桑一點和它一旁的部分叫做射線;兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。
角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉而成的。
平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。
角的表示:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;
把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。(2)角的大小可以度量,可以比較(3)角可以參與運算。角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,
1°=60’,1’=60”
還有叫的三等分線。
AOB平分∠AOC∠AOB=∠BOC=
1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)
-18-
C提分數學
余角和補角
①如果兩個角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的
余角。用數學語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°
②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補角,簡稱互補,其中一個角是另一個角的補角。用數學語言表示為如果∠α+∠β=180°,那么∠α與∠β互補;反過來如果∠α與∠β互補,那么∠α+∠β=180°
③同角(或等角)的余角相等;同角(或等角)的補角相等。
對頂角
①一對角,如果它們的頂點重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一
個角叫做另一個角的對頂角。
注意:對頂角是成對出現的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。
②對頂角的性質:對頂角相等
如圖,∠1和∠4是對頂角,∠2和∠3是對頂角
2431∠1=∠4,∠2=∠3
平行線:
在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。
注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:
提分數學
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內,垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:
兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。
垂線的性質:
性質1:平面內,過一點有且只有一條直線與已知直線垂直。
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。同一平面內,兩條直線的位置關系:相交或平行。
圖形知識結構圖:
提分數學
從不同方向看立體圖形
立體圖形展開立體圖形
幾何圖形平面圖形角的度量角角的大小比較余角和補角角的平分線同角(等角)的余角相等;同角(等角)的補角相等等角的余角相等
直線、射線、線段
平面圖形平面圖形
友情提示:本文中關于《七年級上冊數學知識總結歸納》給出的范例僅供您參考拓展思維使用,七年級上冊數學知識總結歸納:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。