欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 新人教數(shù)學八年級上冊知識點總結

新人教數(shù)學八年級上冊知識點總結

網(wǎng)站:公文素材庫 | 時間:2019-05-28 02:30:37 | 移動端:新人教數(shù)學八年級上冊知識點總結

新人教數(shù)學八年級上冊知識點總結

新人教八年級上冊知識點總結第十一章三角形

1定理三角形兩邊的和大于第三邊2推論三角形兩邊的差小于第三邊

3三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°4推論1直角三角形的兩個銳角互余

5推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和6推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角7定理四邊形的內(nèi)角和等于360°8四邊形的外角和等于360°

9多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°10推論任意多邊的外角和等于360°

第十二章三角形全等

1全等三角形的對應邊、對應角相等

2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等7定理1在角的平分線上的點到這個角的兩邊的距離相等

8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上9角的平分線是到角的兩邊距離相等的所有點的集合

第十三章軸對稱

1定理1關于某條直線對稱的兩個圖形是全等形

2定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

3定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

4逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

5定理線段垂直平分線上的點和這條線段兩個端點的距離相等

6逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上7線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

8等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)9推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

10等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合11推論3等邊三角形的各角都相等,并且每一個角都等于60°

12等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

13推論1三個角都相等的三角形是等邊三角形14推論2有一個角等于60°的等腰三角形是等邊三角形15在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

第十四章整式的乘除與因式分解1整式的乘法:aaamnmnmn(m,n都是正整數(shù))(m,n都是正整數(shù))

n(a)anmn(ab)ab(n都是正整數(shù))(ab)(ab)ab(ab)a2abb(ab)a2abb2整式的除法:aaamnmn22222222n(m,n都是正整數(shù),a0)

注意:(1)單項式乘單項式的結果仍然是單項式。

(2)單項式與多項式相乘,結果是一個多項式,其項數(shù)與因式中多項式的項數(shù)相同。

(3)計算時要注意符號問題,多項式的每一項都包括它前面的符號,同時還要注意單項式的符號。

(4)多項式與多項式相乘的展開式中,有同類項的要合并同類項。(5)公式中的字母可以表示數(shù),也可以表示單項式或多項式。

(6)a1(a0);a0p1(a0,p為正整數(shù))pa(7)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得

的商相加,單項式除以多項式是不能這么計算的。

3因式分解

(1)因式分解:把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式。(2)因式分解的常用方法

(a)提公因式法:abaca(bc)(b)運用公式法:ab(ab)(ab)a2abb(ab)a2abb(ab)

(c)分組分解法:acadbcbda(cd)b(cd)(ab)(cd)(d)十字相乘法:a(pq)apq(ap)(aq)(3)因式分解的一般步驟:

2222222(a)如果多項式的各項有公因式,那么先提取公因式。

(b)在各項提出公因式以后或各項沒有公因式的情況下,觀察多項式的項數(shù):二項式可

以嘗試運用公式法分解因式;3項式可以嘗試運用公式法、十字相乘法分解因式;4項式及4項式以上的可以嘗試分組分解法分解因式(c)分解因式必須分解到每一個因式都不能再分解為止。

第十五章分式分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如xy(yx),(xy)(yx)

22(xy)3(xy)3

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減.分數(shù)的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

2.通分和約分都是依據(jù)分式的基本性質進行變形,其共同點是保持分式的值不變.

3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據(jù):分式的基本性質.

5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數(shù)的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

12.作為最后結果,如果是分式則應該是最簡分式.(九)含有字母系數(shù)的一元一次方程1.含有字母系數(shù)的一元一次方程引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。

含有字母系數(shù)的方程的解法與以前學過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

擴展閱讀:蘇教版數(shù)學八年級上冊知識點總結

蘇教版《數(shù)學》(八年級上冊)知識點總結

第一章軸對稱圖形

軸對稱圖形線段角等腰三角形軸對稱的性質等腰梯形軸對稱的應用軸對稱設計軸對稱圖案第二章勾股定理與平方根

一.勾股定理

1、勾股定理

直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即abc2、勾股定理的逆定理

如果三角形的三邊長a,b,c有關系abc,那么這個三角形是直角三角形。3、勾股數(shù):滿足abc的三個正整數(shù),稱為勾股數(shù)。

222222222二、實數(shù)的概念及分類

1、實數(shù)的分類

正有理數(shù)

有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實數(shù)負有理數(shù)

正無理數(shù)

無理數(shù)無限不循環(huán)小數(shù)負無理數(shù)

2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:(1)開方開不盡的數(shù),如7,32等;

(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如(3)有特定結構的數(shù),如0.1010010001等;(4)某些三角函數(shù)值,如sin60等

o

π3+8等;

三、平方根、算數(shù)平方根和立方根

1、算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x=a,那么這個正數(shù)x就叫做a的算術平方根。特別地,0的算術平方根是0。

表示方法:記作“a”,讀作根號a。

性質:正數(shù)和零的算術平方根都只有一個,零的算術平方根是零。

2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。

表示方法:正數(shù)a的平方根記做“a”,讀作“正、負根號a”。

2

性質:一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。

開平方:求一個數(shù)a的平方根的運算,叫做開平方。注意a的雙重非負性:

a0

3、立方根

一般地,如果一個數(shù)x的立方等于a,即x3=a那么這個數(shù)x就叫做a的立方根(或三次方根)。

表示方法:記作3a

性質:一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負號可以移到根號外面。

a0

四、實數(shù)大小的比較

1、實數(shù)比較大。赫龜(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

2、實數(shù)大小比較的幾種常用方法

(1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。(2)求差比較:設a、b是實數(shù),

ab0ab,ab0ab,ab0ab(3)求商比較法:設a、b是兩正實數(shù),1ab;baab1ab;ab1ab;

(4)絕對值比較法:設a、b是兩負實數(shù),則abab。(5)平方法:設a、b是兩負實數(shù),則a2b2ab。

五、實數(shù)的運算

(1)六種運算:加、減、乘、除、乘方、開方

(2)實數(shù)的運算順序

先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運算律

加法交換律abba

加法結合律(ab)ca(bc)乘法交換律abba乘法結合律(ab)ca(bc)乘法對加法的分配律a(bc)abac

第三章中心對稱圖形(一)

一、平移

1、定義

在平面內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。2、性質

平移前后兩個圖形是全等圖形,對應點連線平行且相等,對應線段平行且相等,對應角相等。

二、旋轉

1、定義

在平面內(nèi),將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角。

2、性質

旋轉前后兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等于旋轉角。

三、四邊形的相關概念

1、四邊形

在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

2、四邊形具有不穩(wěn)定性

3、四邊形的內(nèi)角和定理及外角和定理

四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設多邊形的邊數(shù)為n,則多邊形的對角線共有

n(n3)2條。從n邊形的一個頂點出

發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。

四.平行四邊形

1、平行四邊形的定義

兩組對邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質

(1)平行四邊形的對邊平行且相等。

(2)平行四邊形相鄰的角互補,對角相等

(3)平行四邊形的對角線互相平分。

(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。

常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。

(2)推論:夾在兩條平行線間的平行線段相等。

3、平行四邊形的判定

(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形

(5)定理4:一組對邊平行且相等的四邊形是平行四邊形

4、兩條平行線的距離

兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。

平行線間的距離處處相等。5、平行四邊形的面積

S平行四邊形=底邊長×高=ah

五、矩形

1、矩形的定義

有一個角是直角的平行四邊形叫做矩形。2、矩形的性質

(1)矩形的對邊平行且相等(2)矩形的四個角都是直角

(3)矩形的對角線相等且互相平分

(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。

3、矩形的判定

(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形(3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積S矩形=長×寬=ab

六、菱形

1、菱形的定義

有一組鄰邊相等的平行四邊形叫做菱形

2、菱形的性質

(1)菱形的四條邊相等,對邊平行(2)菱形的相鄰的角互補,對角相等

(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角

(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。

3、菱形的判定

(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形

(3)定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積

S菱形=底邊長×高=兩條對角線乘積的一半

七.正方形

1、正方形的定義

有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。2、正方形的性質

(1)正方形四條邊都相等,對邊平行

(2)正方形的四個角都是直角

(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。

3、正方形的判定

判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。4、正方形的面積

設正方形邊長為a,對角線長為bS正方形=a2b22

八、梯形

(一)1、梯形的相關概念

一組對邊平行而另一組對邊不平行的四邊形叫做梯形。

梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。

2、梯形的判定

(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。(2)一組對邊平行且不相等的四邊形是梯形。

(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形(三)等腰梯形1、等腰梯形的定義

兩腰相等的梯形叫做等腰梯形。2、等腰梯形的性質

(1)等腰梯形的兩腰相等,兩底平行。

(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。

(3)等腰梯形的對角線相等。

(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。3、等腰梯形的判定

(1)定義:兩腰相等的梯形是等腰梯形

(2)定理:在同一底上的兩個角相等的梯形是等腰梯形

(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)(四)梯形的面積(1)如圖,S梯形ABCD12(CDAB)DE

(2)梯形中有關圖形的面積:①SABDSBAC;②SAODSBOC;③SADCSBCD八、中心對稱圖形1、定義

在平面內(nèi),一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。

2、性質

(1)關于中心對稱的兩個圖形是全等形。

(2)關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。3、判定

如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。

第四章數(shù)量、位置的變化

一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。二、平面直角坐標系及有關概念1、平面直角坐標系

在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

2、為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。3、點的坐標的概念

對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數(shù)a,b分別叫做點P的橫坐標、縱坐標,有序數(shù)對(a,b)叫做點P的坐標。

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序實數(shù)對,當ab時,(a,b)和(b,a)是兩個不同點的坐標。

平面內(nèi)點的與有序實數(shù)對是一一對應的。4、不同位置的點的坐標的特征(1)、各象限內(nèi)點的坐標的特征點P(x,y)在第一象限x0,y0

點P(x,y)在第二象限x0,y0點P(x,y)在第三象限x0,y0點P(x,y)在第四象限x0,y0(2)、坐標軸上的點的特征

點P(x,y)在x軸上y0,x為任意實數(shù)點P(x,y)在y軸上x0,y為任意實數(shù)

點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)即原點(3)、兩條坐標軸夾角平分線上點的坐標的特征

點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)(4)、和坐標軸平行的直線上點的坐標的特征位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。(5)、關于x軸、y軸或原點對稱的點的坐標的特征

點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數(shù),即點P(x,y)關于x軸的對稱點為P’(x,-y)

點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數(shù),即點P(x,y)關于y軸的對稱點為P’(-x,y)

點P與點p’關于原點對稱橫、縱坐標均互為相反數(shù),即點P(x,y)關于原點的對稱點為P’(-x,-y)

(6)、點到坐標軸及原點的距離

點P(x,y)到坐標軸及原點的距離:(1)點P(x,y)到x軸的距離等于y(2)點P(x,y)到y(tǒng)軸的距離等于x(3)點P(x,y)到原點的距離等于x2y2三、坐標變化與圖形變化的規(guī)律:

坐標(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮。樵瓉淼腶倍關于y軸或x軸對稱關于原點成中心對稱沿x軸或y軸平移a個單位沿x軸平移a個單位,再沿y軸平移a個單第五章一次函數(shù)

一、函數(shù):

一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。二、自變量取值范圍

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。三、函數(shù)的三種表示法

(1)關系式(解析)法

兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。(3)圖象法

用圖象表示函數(shù)關系的方法叫做圖象法。四、由函數(shù)關系式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對應值

(2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點

(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。五、正比例函數(shù)和一次函數(shù)1、正比例函數(shù)和一次函數(shù)的概念

一般地,若兩個變量x,y間的關系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

特別地,當一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。

2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

一次函數(shù)ykxb的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(0,0)的直線。

k的符號b的符號函數(shù)圖像yb>00xyb0xyb0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;(2)當k0時,y隨x的增大而增大(2)當k(1)平均數(shù):一般地,對于n個數(shù)x1,x2,,xn,我們把個數(shù)的算術平均數(shù),簡稱平均數(shù),記為x。

(2)加權平均數(shù):

1n(x1x2xn)叫做這n

3、眾數(shù)

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

4、中位數(shù)

一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

友情提示:本文中關于《新人教數(shù)學八年級上冊知識點總結》給出的范例僅供您參考拓展思維使用,新人教數(shù)學八年級上冊知識點總結:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。


新人教數(shù)學八年級上冊知識點總結》由互聯(lián)網(wǎng)用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://m.7334dd.com/gongwen/517731.html