欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 七年級數學概念總結

七年級數學概念總結

網站:公文素材庫 | 時間:2019-05-28 03:36:17 | 移動端:七年級數學概念總結

七年級數學概念總結

一、有理數

1、大于0的數叫做正數(positivenumber)。

2、在正數前面加上負號“-”的數叫做負數(negativenumber)。3、整數和分數統(tǒng)稱為有理數(rationalnumber)。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。

5、在直線上任取一個點表示數0,這個點叫做原點(origin)。6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。

7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。8、正數大于0,0大于負數,正數大于負數。9、兩個負數,絕對值大的反而小。10、有理數加法法則

(1)同號兩數相加,取相同的符號,并把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。(3)一個數同0相加,仍得這個數。

11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。13有理數減法法則

減去一個數,等于加上這個數的相反數。14、有理數乘法法則

兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。

15、有理數中仍然有:乘積是1的兩個數互為倒數。

16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。19、有理數除法法則

除以一個不等于0的數,等于乘這個數的倒數。

20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。

21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)22、根據有理數的乘法法則可以得出

負數的奇次冪是負數,負數的偶次冪是正數,正數的任何次冪都是正數。0的任何次冪都是0,任何數的0次冪都是1。23、做有理數混合運算時,應注意以下運算順序:(1)先乘方,再乘除,最后加減;(2)同級運算,從左到右進行;

(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。

25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數

(approximatenumber)。

26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)二:整式的加減

1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。

2、單項式中的數字因數叫做這個單項式的系數(coefficient)。3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degreeofamonomial)。

4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantlyterm)。5、多項式里次數最高項的次數,叫做這個多項式的次數(degreeofapolynomial)。

6、把多項式中的同類項合并成一項,叫做合并同類項。

合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。

7、如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;

8、如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。

9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

三:一元一次方程

1、列方程時,要先設字母表示未知數,然后根據問題中的相等關系,

寫出還有未知數的等式方程(equation)。

2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linearequationwithoneunknown)。

3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。

4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

6、把等式一邊的某項變號后移到另一邊,叫做移項。7、應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間盈虧問題:利潤=售價-成本利率=利潤÷成本×100%售價=標價×折扣數×10%蓄利潤問題:利息=本金×利率×時間本息和=本金+利息四:圖形初步認識

1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometricfigure)。2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。

3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。

4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,

這樣的平面圖形稱為相應立體圖形的展開圖(net)。5、幾何體簡稱為體(solid)。

6、包圍著體的是面(surface),面有平的面和曲的面兩種。

7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。8、點動成面,面動成線,線動成體。

9、經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。

10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointofintersection)。

11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。

12、經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。14、角∠(angle)也是一種基本的幾何圖形。

15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angularbisector)。

17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementaryangle),即其中的每一個角是另一個角的余角。18、如果兩個角的和等于180°(平角),就說這兩個角互為補角

(supplementaryangle),即其中一個角是另一個角的補角19、等角的補角相等,等角的余角相等。20、抓規(guī)律n

2

=1、4、9、16、25....

2(n-1)=0、2、4、6、8....2n=2、4、6、8、10....2(n+1)=4、6、8、10....2n-1=1、3、5、7、9....2n+1=3、5、7、9、11....4n=4、8、12、16、20....

n(n-1)/2=0、1、3、6、10、15....n(n+1)/2=1、3、6、10、15....(-1)=-1、1、-1、1、-1....(-1)(-1)

2n

n+1

=1、-1、1、-1、1....=0、-1、1、-1、1....

n-1

n-1=0、3、8、15、24....n+1=2、5、10、17、26....

2

擴展閱讀:七年級上冊人教版數學概念總結

第一章有理數

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;(2)有理數的分類:①②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;(4)自然數0和正整數;a>0a是正數;a<0a是負數;

a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數

2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;(3)相反數的和為0a+b=0a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:或;絕對值的問題經常分類討論;(3);;

(4)|a|是重要的非負數,即|a|≥0;注意:|a||b|=|ab|,.

5.有理數比大。海1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.

7.有理數加法法則:

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

10有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;(4)據規(guī)律底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.

第二章整式的加減

1.單項式:在代數式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.

6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.

7.合并同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.

9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.

第三章一元一次方程

1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性質:等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).

9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).

10.列一元一次方程解應用題:

(1)讀題分析法:…………多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:…………多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:(1)行程問題:距離=速度時間;(2)工程問題:工作量=工效工時;(3)比率問題:部分=全體比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價折,利潤=售價-成本,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h.

第四章豐富多彩的圖形

1.一個點可以用一個大寫字母表示。

2.一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

3.一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

4.一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。(2)過一點的直線有無數條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的

8、線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。11、角的表示

角的表示方法有以下四種:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。把1°的角60等分,每一份叫做1分的角,1分記作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。(2)角的大小可以度量,可以比較(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“‖”表示,如“AB‖CD”,讀作“AB平行于CD”。注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

友情提示:本文中關于《七年級數學概念總結》給出的范例僅供您參考拓展思維使用,七年級數學概念總結:該篇文章建議您自主創(chuàng)作。

來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯系我們及時刪除。


七年級數學概念總結》由互聯網用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://m.7334dd.com/gongwen/524354.html
相關文章