高三第一次聯(lián)考總結(jié)
高三(5)第一次市聯(lián)考分析材料
藺習(xí)習(xí)
尊敬的各位領(lǐng)導(dǎo)、各位同仁:你們好!
轉(zhuǎn)眼間2個月過去了,學(xué)生進(jìn)入新校園的興奮與喜悅感,種種不適應(yīng)已經(jīng)消失,學(xué)生完全進(jìn)入高三的狀態(tài)。調(diào)皮的學(xué)生不再調(diào)皮,犯錯的學(xué)生不再出錯。在領(lǐng)導(dǎo)和老師們的辛勤付出下,我們高三的局面是值得肯定的,我作為大家庭中得一員,感到欣喜與自豪。
這次市聯(lián)考,是對高三2個月學(xué)情的檢測,也是高中2年的檢測。我們班第一次市聯(lián)考能在這新舊交替中考出這樣的成績,讓我們看到了高考的希望。
但由于高三(5)部分學(xué)生沒有足夠重視本次考試,也存在著一些問題。為了引起這部分學(xué)生對以后考試重視程度,我在班級中用市聯(lián)考的數(shù)據(jù),來分析給學(xué)生看,論證給學(xué)生聽,引起學(xué)生對本次考試的重視,以及對以后每一次考試的重視。
一、考試之后發(fā)現(xiàn)的問題
1、本班學(xué)生基礎(chǔ)薄弱,知識建構(gòu)不足,知識遷移能力差等問題,2、有20幾個學(xué)生學(xué)習(xí)壓力大,經(jīng)常焦慮,特別是部分復(fù)讀生,個別同學(xué)還存在心理問題。
3、很多學(xué)生太注重結(jié)果,不太注重考試的過程和細(xì)節(jié)問題。4、發(fā)現(xiàn)學(xué)生答卷時間不夠,有些習(xí)題未能及時完成。二、解決措施
本次月考存在的問題,為下一階段的復(fù)習(xí)指明了方向,1、我需要做的
1)要認(rèn)真研究考綱,分析題型變化;鞏固學(xué)生知識結(jié)構(gòu),強(qiáng)化學(xué)生答題技巧;講求課堂效率,用好手中的資料,做好教學(xué)筆記。
2)要教育學(xué)生"考前看分重如山,考后看分淡如水"。
3)協(xié)調(diào)好各科老師的關(guān)系,讓班集體各科教師形成合力,多與學(xué)生交心,多為學(xué)生考慮。
4)研究學(xué)生,耐心教育學(xué)生,多給學(xué)生信心、關(guān)愛。
5)鼓勵學(xué)生,老師不怕你聽不懂,就怕你不問;不怕你基礎(chǔ)差,就怕你懶,不行動;更怕你失去斗志,自暴自棄。
6)提高學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生學(xué)習(xí)潛能,喚醒他們不服輸?shù)木,參與競爭的精神。
2、學(xué)生需要做自我總結(jié)
1)通過考試來反思和總結(jié)自己的優(yōu)勢是什么,劣勢又是什么?平時學(xué)習(xí)和做題時存在的問題及不良習(xí)慣。調(diào)整學(xué)習(xí)方法和思路。
2)找準(zhǔn)自己的位置,確定下一階段的目標(biāo)是什么?分解目標(biāo)為若干個小目標(biāo),每個小目標(biāo)和自己的實(shí)際結(jié)合起來并注重效率。全身心完成每個小目標(biāo),并進(jìn)行階段性思考和總結(jié)。
3)注意調(diào)整自己的心態(tài),控制自己的情緒,不要對周圍的事物太敏感,要把壓力變?yōu)閯恿。放下包袱,心態(tài)歸零,從頭開始。直面高三生活。作為班主任,我體會到班級管理不能只憑一腔熱血,還要一套完善的班級管理機(jī)制。營造良好的學(xué)習(xí)氛圍,打造好的學(xué)習(xí)環(huán)境才能讓大家成才。才有利于學(xué)生的全面發(fā)展。
利用好班會,開好實(shí)實(shí)在在的班會,解決實(shí)際問題。
加強(qiáng)與家長的聯(lián)系。做到家校合一,使管理統(tǒng)一化,更有效化。
總之,我會不斷分析和總結(jié)經(jīng)驗(yàn)教訓(xùn),通過向周圍的老教師、業(yè)務(wù)精的班主任學(xué)習(xí),提高自己的業(yè)務(wù)水平和班主任的工作藝術(shù),為把班主任的工作做得更好而努力。
如有不妥之處,敬請各位同仁批評指正。
擴(kuò)展閱讀:高三第一次模擬考試數(shù)學(xué)總結(jié)
選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫南通市201*屆高三第一次調(diào)研考試數(shù)學(xué)
一、填空題:本大題共14小題,每小題5分,共70分.
1.已知集合U={1,2,3,4},M={1,2},N={2,3},則(M∪N)=.2.復(fù)數(shù)(i是虛數(shù)單位)的虛部為.3.設(shè)向量a,b滿足:,,則.
4.在平面直角坐標(biāo)系xOy中,直線與直線互相垂直的充要條件是m=.5.函數(shù)的最小正周期是.
6.在數(shù)列{an}中,若對于n∈N*,總有=2n-1,則=.
7.拋擲甲、乙兩枚質(zhì)地均勻且四面上分別標(biāo)有1,2,3,4的正四面體,其底面落于桌面,記所得的數(shù)字分別為x,y,則為整數(shù)的概率是.
8.為了解高中生用電腦輸入漢字的水平,隨機(jī)抽取了部分學(xué)生進(jìn)行每分鐘輸入漢字個數(shù)測試,下圖是根據(jù)抽樣測試后的數(shù)據(jù)繪制的頻率分布直方圖,其中每分鐘輸入漢字個數(shù)的范圍是[50,150],樣本數(shù)據(jù)分組為[50,70),[70,90),[90,110),[110,130),[130,150],已知樣本中每分鐘輸入漢字個數(shù)小于90的人數(shù)是36,則樣本中每分鐘輸入漢字個數(shù)大于或等于70個并且小于130個的人數(shù)是.9.運(yùn)行如圖所示程序框圖后,輸出的結(jié)果是.
10.關(guān)于直線和平面,有以下四個命題:①若,則;②若,則;
③若,則且;④若,則或.其中假命題的序號是.
11.已知函數(shù)若,則實(shí)數(shù)a的取值范圍是.
12.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,以其兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的
四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點(diǎn),C、D的坐標(biāo)分別是,則PC?PD的最大值為.13.設(shè)面積為S的平面四邊形的第i條邊的邊長記為ai(i=1,2,3,4),P是該四邊形內(nèi)任意一點(diǎn),P點(diǎn)到第i條邊的距離記為hi,若,則.類比上述結(jié)論,體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的任意一點(diǎn),Q點(diǎn)到第i個面的距離記為Hi,則相應(yīng)的正確命題是:若,則.
14.在平面直角坐標(biāo)系xOy中,設(shè)直線和圓相切,其中m,,若函數(shù)的零點(diǎn),則k=.二、解答題:本大題共6小題,共90分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.15.(本小題滿分14分)在△ABC中,a,b,c分別是角A、B、C所對的邊,且b2=ac,向量和滿足.(1)求的值;(2)求證:三角形ABC為等邊三角形.16.(本小題滿分14分)如圖,已知AB⊥平面ACD,DE⊥平面ACD,AC=AD,DE=2AB,F(xiàn)為CD的中點(diǎn).(1)求證:AF∥平面BCE;(2)求證:平面BCE⊥平面CDE.
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫17.(本小題滿分15分)設(shè)等差數(shù)列的前項(xiàng)和為且.(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)設(shè)數(shù)列的通項(xiàng)公式為,問:是否存在正整數(shù)t,使得
成等差數(shù)列?若存在,求出t和m的值;若不存在,請說明理由.18.(本小題滿分15分)某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計劃在BC邊的高AO上一點(diǎn)P處建造一個
變電站.記P到三個村莊的距離之和為y.(1)設(shè),把y表示成的函數(shù)關(guān)系式;(2)變電站建于何處時,它到三個小區(qū)的距離之和最?19.(本小題滿分16分)已知橢圓的離心率為,過右頂點(diǎn)A的直線l與橢圓C相交于A、B兩點(diǎn),且.(1)求橢圓C和直線l的方程;
(2)記曲線C在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D.若曲線與D有公共點(diǎn),試求實(shí)數(shù)m的最小值.20.(本小題滿分16分)
已知二次函數(shù)g(x)對任意實(shí)數(shù)x都滿足,且.令.
(1)求g(x)的表達(dá)式;
(2)若使成立,求實(shí)數(shù)m的取值范圍;(3)設(shè),,證明:對,恒有附加題部分21.【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修41幾何證明選講
如圖,AB是⊙O的直徑,C、F為⊙O上的點(diǎn),且CA平分∠BAF,過點(diǎn)C作CD⊥AF交AF的延長線于點(diǎn)D.求證:DC是⊙O的切線.
B.選修42矩陣與變換
變換T是繞坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)的旋轉(zhuǎn)變換,求曲線在變換T作用下所得的曲線方程.
C.選修44參數(shù)方程與極坐標(biāo)(本題滿分10分)已知圓和圓的極坐標(biāo)方程分別為,.
(1)把圓和圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.
D.選修45不等式證明選講(本題滿分10分)已知,求證:.
【必做題】第22題、第23題,每題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
22.動點(diǎn)P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運(yùn)動,且到點(diǎn)F(0,1)和直線l的距離之和為4.(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.
23.如圖,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D為A1C1的中點(diǎn),F(xiàn)在線段AA1上.(1)AF為何值時,CF⊥平面B1DF?
(2)設(shè)AF=1,求平面B1CF與平面ABC所成的銳二面角的余弦值.
.南通市201*屆高三第一次調(diào)研考試數(shù)學(xué)答案
【填空題答案】
1.;2.;3.2;4.;5.;
6.;7.;8.90;9.10;10.①③④;11.;12.4;13.;14.0.
二、解答題:本大題共6小題,共90分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.15.(本小題滿分14分)在△ABC中,a,b,c分別是角A、B、C所對的邊,且b2=ac,向量和滿足.(1)求的值;(2)求證:三角形ABC為等邊三角形.【解】(1)由得,,……………………2分
又B=π(A+C),得cos(AC)cos(A+C)=,……………………4分即cosAcosC+sinAsinC(cosAcosCsinAsinC)=,所以sinAsinC=.…………6分【證明】(2)由b2=ac及正弦定理得,故.……………8分
于是,所以或.因?yàn)閏osB=cos(AC)>0,所以,故.…………………11分由余弦定理得,即,又b2=ac,所以得a=c.
因?yàn),所以三角形ABC為等邊三角形.…………………14分16.(本小題滿分14分)如圖,已知AB⊥平面ACD,DE⊥平面ACD,AC=AD,DE=2AB,F(xiàn)為CD的中點(diǎn).(1)求證:AF∥平面BCE;(2)求證:平面BCE⊥平面CDE.【證明】(1)因?yàn)锳B⊥平面ACD,DE⊥平面ACD,所以AB∥DE.
取CE的中點(diǎn)G,連結(jié)BG、GF,因?yàn)镕為的中點(diǎn),所以GF∥ED∥BA,GF=ED=BA,
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫從而ABGF是平行四邊形,于是AF∥BG.……………………4分因?yàn)锳F平面BCE,BG平面BCE,所以AF∥平面BCE.……………………7分(2)因?yàn)锳B⊥平面ACD,AF平面ACD,
所以AB⊥AF,即ABGF是矩形,所以AF⊥GF.……………………9分又AC=AD,所以AF⊥CD.…………………11分
而CD∩GF=F,所以AF⊥平面GCD,即AF⊥平面CDE.因?yàn)锳F∥BG,所以BG⊥平面CDE.因?yàn)锽G平面BCE,所以平面BCE⊥平面CDE.…………………14分17.(本小題滿分15分)設(shè)等差數(shù)列的前項(xiàng)和為且.(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)設(shè)數(shù)列的通項(xiàng)公式為,問:是否存在正整數(shù)t,使得
成等差數(shù)列?若存在,求出t和m的值;若不存在,請說明理由.【解】(1)設(shè)等差數(shù)列的公差為d.由已知得……………………2分即解得……………………4分.故.………6分
(2)由(1)知.要使成等差數(shù)列,必須,即,……8分.整理得,……………11分因?yàn)閙,t為正整數(shù),所以t只能取2,3,5.當(dāng)時,;當(dāng)時,;當(dāng)時,.故存在正整數(shù)t,使得成等差數(shù)列.…………………15分18.(本小題滿分15分)某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計劃在BC邊的高AO上一點(diǎn)P處建造一個
變電站.記P到三個村莊的距離之和為y.(1)設(shè),把y表示成的函數(shù)關(guān)系式;(2)變電站建于何處時,它到三個小區(qū)的距離之和最?【解】(1)在中,所以=OA=.所以
由題意知.……………………2分所以點(diǎn)P到A、B、C的距離之和為.……………………6分
故所求函數(shù)關(guān)系式為.……………………7分
(2)由(1)得,令即,又,從而.……………………9分.當(dāng)時,;當(dāng)時,.數(shù)學(xué)驛站
所以當(dāng)時,取得最小值,…………………13分此時(km),即點(diǎn)P在OA上距O點(diǎn)km處.
【答】變電站建于距O點(diǎn)km處時,它到三個小區(qū)的距離之和最小.…………15分19.(本小題滿分16分)已知橢圓的離心率為,過右頂點(diǎn)A的直線l與橢圓C相交于A、B兩點(diǎn),且.(1)求橢圓C和直線l的方程;數(shù)學(xué)驛站
(2)記曲線C在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D.若曲線與D有公共點(diǎn),試求實(shí)數(shù)m的最小值.【解】(1)由離心率,得,即.①………………2分又點(diǎn)在橢圓上,即.②………………4分解①②得,
故所求橢圓方程為.…………………6分由得直線l的方程為.………8分(2)曲線,
即圓,其圓心坐標(biāo)為,半徑,表示圓心在直線
上,半徑為的動圓.…………………10分由于要求實(shí)數(shù)m的最小值,由圖可知,只須考慮的情形.設(shè)與直線l相切于點(diǎn)T,則由,得,…………………12分當(dāng)時,過點(diǎn)與直線l垂直的直線的方程為,
解方程組得.…………………14分
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫因?yàn)閰^(qū)域D內(nèi)的點(diǎn)的橫坐標(biāo)的最小值與最大值分別為,所以切點(diǎn),由圖可知當(dāng)過點(diǎn)B時,m取得最小值,即,
解得.…………………16分(說明:若不說理由,直接由圓過點(diǎn)B時,求得m的最小值,扣4分)20.(本小題滿分16分)
已知二次函數(shù)g(x)對任意實(shí)數(shù)x都滿足,且.令.
(1)求g(x)的表達(dá)式;數(shù)學(xué)驛站(2)若使成立,求實(shí)數(shù)m的取值范圍;(3)設(shè),,證明:對,恒有
【解】(1)設(shè),于是所以
又,則.所以.……………………4分(2)
當(dāng)m>0時,由對數(shù)函數(shù)性質(zhì),f(x)的值域?yàn)镽;
當(dāng)m=0時,對,恒成立;……………………6分當(dāng)m選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫又因?yàn)镃D⊥AF,所以CD⊥OC,
故DC是⊙O的切線.…………………10分
B.選修42矩陣與變換
變換T是繞坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)的旋轉(zhuǎn)變換,求曲線在變換T作用下所得的曲線方程.
【解】變換T所對應(yīng)變換矩陣為,設(shè)是變換后圖像上任一點(diǎn),與之對應(yīng)的變換前的點(diǎn)是,則,即,代入,即,
所以變換后的曲線方程為.…………………10分
C.選修44參數(shù)方程與極坐標(biāo)(本題滿分10分)已知圓和圓的極坐標(biāo)方程分別為,.
(1)把圓和圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.【解】(1),所以;因?yàn),所以,所以.……?分
(2)將兩圓的直角坐標(biāo)方程相減,得經(jīng)過兩圓交點(diǎn)的直線方程為.化為極坐標(biāo)方程為,即.…………………10分
D.選修45不等式證明選講(本題滿分10分)已知,求證:.
【解】因?yàn),所以,所以要證,
即證,即證,即證,而顯然成立,故.……………10分
【必做題】第22題、第23題,每題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
22.動點(diǎn)P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運(yùn)動,且到點(diǎn)F(0,1)和直線l的距離之和為4.(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.【解】(1)設(shè)P(x,y),根據(jù)題意,得+3-y=4,化簡,得y=x2(y≤3).…………………4分
(2)設(shè)過Q的直線方程為y=kx-1,代入拋物線方程,整理得x2-4kx+4=0.由△=16k2-16=0.解得k=±1.
于是所求切線方程為y=±x-1(亦可用導(dǎo)數(shù)求得切線方程).切點(diǎn)的坐標(biāo)為(2,1),(-2,1).
由對稱性知所求的區(qū)域的面積為S=…………………10分
23.如圖,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D為A1C1的中點(diǎn),F(xiàn)在線段AA1上.(1)AF為何值時,CF⊥平面B1DF?
(2)設(shè)AF=1,求平面B1CF與平面ABC所成的銳二面角的余弦值.【解】(1)因?yàn)橹比庵鵄BC-A1B1C1中,BB1⊥面ABC,∠ABC=.
以B點(diǎn)為原點(diǎn),BA、BC、BB1分別為x、y、z軸建立如圖所示空間直角坐標(biāo)系.因?yàn)锳C=2,∠ABC=90o,所以AB=BC=2,
從而B(0,0,0),A,C,B1(0,0,3),A1,C1,D,E.
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫所以,
設(shè)AF=x,則F(2,0,x),.
,所以
要使CF⊥平面B1DF,只需CF⊥B1F.
由=2+x(x-3)=0,得x=1或x=2,
故當(dāng)AF=1或2時,CF⊥平面B1DF.………………5分(2)由(1)知平面ABC的法向量為n1=(0,0,1).設(shè)平面B1CF的法向量為,則由得令z=1得,
所以平面B1CF與平面ABC所成的銳二面角的余弦值…………………10分
w.w.w.k.s.5.u.c.o.m
選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫(按ctrl點(diǎn)擊打開)
選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫
友情提示:本文中關(guān)于《高三第一次聯(lián)考總結(jié)》給出的范例僅供您參考拓展思維使用,高三第一次聯(lián)考總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。