欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-28 22:39:38 | 移動(dòng)端:高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

(1)高中函數(shù)公式的變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。(2)一次函數(shù):①若兩個(gè)變量不等于0)的形式,則稱

,間的關(guān)系式可以表示成是的一次函數(shù)。②當(dāng)=0時(shí),稱

(為常數(shù),是的正比例

函數(shù)。

(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)①把一個(gè)函數(shù)的自變量與對(duì)應(yīng)的因變量

的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),

在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)

=

的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。0,0,

O,則經(jīng)2、3、4象限;當(dāng)0時(shí),則經(jīng)1、3、4象限;當(dāng)

0,0,

0時(shí),則0時(shí),

③在一次函數(shù)中,當(dāng)經(jīng)1、2、4象限;當(dāng)則經(jīng)1、2、3象限。④當(dāng)

0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而

減少。

(4)高中函數(shù)的二次函數(shù):①一般式:

(

),對(duì)稱軸是

頂點(diǎn)是②頂點(diǎn)式:③交點(diǎn)式:

;((

),對(duì)稱軸是),其中(

頂點(diǎn)是),(

;)是拋物線與x

軸的交點(diǎn)

(5)高中函數(shù)的二次函數(shù)的性質(zhì)①函數(shù)

的圖象關(guān)于直線

對(duì)稱。

②時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而減少;在對(duì)稱軸

()右側(cè);的值隨值的增大而增大。當(dāng)時(shí),取得最小值

③時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而增大;在對(duì)稱軸

()右側(cè);的值隨值的增大而減少。當(dāng)時(shí),取得最大值

9高中函數(shù)的圖形的對(duì)稱

(1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。

(2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。

擴(kuò)展閱讀:高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版[1]

高中數(shù)學(xué)第四章-三角函數(shù)

1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):

|k360,kZ

▲y2sinx1cosxcosx②終邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ④終邊在坐標(biāo)軸上的角的集合:|k90,kZ⑤終邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ

3sinx4cosxcosx1sinx2sinx3x4SIN\\COS三角函數(shù)值大小關(guān)系圖1、2、3、4表示第一、二、三、四象限一半所在區(qū)域⑦若角與角的終邊關(guān)于x軸對(duì)稱,則角與角的關(guān)系:360k⑧若角與角的終邊關(guān)于y軸對(duì)稱,則角與角的關(guān)系:360k180⑨若角與角的終邊在一條直線上,則角與角的關(guān)系:180k⑩角與角的終邊互相垂直,則角與角的關(guān)系:360k902.角度與弧度的互換關(guān)系:360°=2180°=1°=0.017451=57.30°=57°18′注意:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零.

、弧度與角度互換公式:1rad=180°≈57.30°=57°18.1°=≈0.01745(rad)

1803、弧長(zhǎng)公式:l2||r.扇形面積公式:s扇形lr||r

12124、三角函數(shù):設(shè)是一個(gè)任意角,在的終邊上任。ó愑谠c(diǎn)的)一點(diǎn)P(x,y)P與原點(diǎn)的距離為r,則siny;rya的終邊P(x,y)ryxcos;tanxr;cotx;secr;.cscr.yxyox5、三角函數(shù)在各象限的符號(hào):(一全二正弦,三切四余弦)++ox--正弦、余割y-+o-+x余弦、正割y-+ox+-正切、余切OyyPTMAx

16.幾個(gè)重要結(jié)論:(1)y6、三角函數(shù)線

正弦線:MP;余弦線:OM;正切線:AT.

高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)

(2)y|sinx|>|cosx|sinx>cosxOx|cosx|>|sinx|O|cosx|>|sinx|xcosx>sinx|sinx|>|cosx|(3)若o

7.三角函數(shù)的定義域:三角函數(shù)f(x)sinxf(x)cosxf(x)tanxf(x)cotxf(x)secxf(x)cscx定義域x|xRx|xR1x|xR且xk,kZ2x|xR且xk,kZ1x|xR且xk,kZ2x|xR且xk,kZcoscoscotsin8、同角三角函數(shù)的基本關(guān)系式:sintan

cos1tancot1cscsin1sec

sin2cos21sec2tan21csc2cot21

9、誘導(dǎo)公式:

把k的三角函數(shù)化為的三角函數(shù),概括為:2“奇變偶不變,符號(hào)看象限”

三角函數(shù)的公式:(一)基本關(guān)系

公式組一公式組二公式組三sinxsin(2kx)sinxsin(x)sinxsinxcscx=1tanx=sin2x+cos2x=1cosxcos(2kx)cosxcos(x)cosxcosx2

x=cosxsecx=11+tanx=sec2xtan(2kx)tanxtan(x)tanxsinxcot(2kx)cotxcot(x)coxttanxcotx=11+cot2x=csc2x公式組四公式組五公式組六sin(x)sinxsin2(x)sinxsin(x)sinxcos(x)cosxcos2(x)cosxcos(x)cosx

tan(x)tanxtan2(x)tanxtan(x)tanxcot(x)cotxcot2(x)coxtcot(x)coxt(二)角與角之間的互換

公式組一公式組二

22sincoscos()coscossinsinsin2sco2ssi2n2co2s112sincos()coscossinsinco2sin()sincoscossintan22tan1tan2

sin()sincoscossinsin21cos2tan()tantan1coscos

1tantan22高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)tan()tantantan1cossin1cos1tantan21cos1cossin公式組三公式組四公式組五11sinsincos()sin2tan222sin1cossinsinsin11tan2sin()cos2221coscoscoscos122tan()cot1tan122sinsincoscoscos211tan2cos()sin2sinsin2sincos2221sinsin2cossintan()cot2tan2222tancoscos2coscos11tan222sin()cos22coscos2sinsin2262,,tan15cot7523,.tan75cot1523sin15cos75sincos4sin75cos1562

4

10.正弦、余弦、正切、余切函數(shù)的圖象的性質(zhì):定義域值域周期性奇偶性單調(diào)性ysinxycosxR[1,1]ytanx1x|xR且xk,kZ2ycotxx|xR且xk,kZRyAsinx(A、>0)RR[1,1]RA,A當(dāng)0,非奇非偶當(dāng)0,奇函數(shù)2k2k2(A),12(A)2奇函數(shù)22偶函數(shù)[2k1,2k]奇函數(shù)k,k22奇函數(shù)[22k,;k,k1上為減函數(shù)(kZ)22k]上為增函數(shù);[2k,232k]2上為增函數(shù)[2k,2k1]上為減函數(shù)(kZ)上為增函數(shù)(kZ)上為增函數(shù);2k上為減函數(shù)(kZ)2(A),32k2(A)上為減函數(shù)高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)(kZ)注意:①ysinx與ysinx的單調(diào)性正好相反;ycosx與ycosx的單調(diào)性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).

▲②ysinx與ycosx的周期是.

x)或ycos(x)(0)的周期T③ysin(2y.

Oxxytan的周期為2(TT2,如圖,翻折無(wú)效).

2x)的對(duì)稱軸方程是xk④ysin(2(cs(kZ),對(duì)稱中心(k,0);yox)的

對(duì)稱軸方程是xk(kZ),對(duì)稱中心(k1,0);yant(2(x)的對(duì)稱中心

k.,0)2ycos2x原點(diǎn)對(duì)稱ycos(2x)cos2x

tan1,k⑤當(dāng)tan

2tan1,k(kZ);tan

2(kZ).

⑥ycosx與ysinx2k是同一函數(shù),而y(x)是偶函數(shù),則

21y(x)sin(xk)cos(x).

2⑦函數(shù)ytanx在R上為增函數(shù).(×)[只能在某個(gè)單調(diào)區(qū)間單調(diào)遞增.若在整個(gè)定義域,

ytanx為增函數(shù),同樣也是錯(cuò)誤的].

⑧定義域關(guān)于原點(diǎn)對(duì)稱是f(x)具有奇偶性的必要不充分條件.(奇偶性的兩個(gè)條件:一是定義域關(guān)于原點(diǎn)對(duì)稱(奇偶都要),二是滿足奇偶性條件,偶函數(shù):f(x)f(x),奇函數(shù):f(x)f(x))

1奇偶性的單調(diào)性:奇同偶反.例如:ytanx是奇函數(shù),ytan(x)是非奇非偶.(定

3義域不關(guān)于原點(diǎn)對(duì)稱)

奇函數(shù)特有性質(zhì):若0x的定義域,則f(x)一定有f(0)0.(0x的定義域,則無(wú)此性質(zhì))

▲⑨ysinx不是周期函數(shù);ysinx為周期函數(shù)(T);y▲yx1/2x高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)

y=cos|x|圖象y=|cos2x+1/2|圖象;ycosx為周期函數(shù)(T);ycosx是周期函數(shù)(如圖)

ycos2x1的周期為(如圖),并非所有周期函數(shù)都有最小正周期,例如:

2yf(x)5f(xk),kR.

⑩yacosbsina2b2sin()cos11、三角函數(shù)圖象的作法:1)、幾何法:

b有a2b2y.a2)、描點(diǎn)法及其特例五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線).

3)、利用圖象變換作三角函數(shù)圖象.

三角函數(shù)的圖象變換有振幅變換、周期變換和相位變換等.

函數(shù)y=Asin(ωx+φ)的振幅|A|,周期T2,頻率f1||,相位x;初相||T2(即當(dāng)x=0時(shí)的相位).(當(dāng)A>0,ω>0時(shí)以上公式可去絕對(duì)值符號(hào)),

由y=sinx的圖象上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長(zhǎng)(當(dāng)|A|>1)或縮短(當(dāng)0<|A|<1)到原來(lái)的|A|倍,得到y(tǒng)=Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)

由y=sinx的圖象上的點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)(0<|ω|<1)或縮短(|ω|>1)到原來(lái)的|1|倍,得到y(tǒng)=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用ωx

替換x)

由y=sinx的圖象上所有的點(diǎn)向左(當(dāng)φ>0)或向右(當(dāng)φ<0)平行移動(dòng)|φ|個(gè)單位,得到y(tǒng)=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)

由y=sinx的圖象上所有的點(diǎn)向上(當(dāng)b>0)或向下(當(dāng)b<0)平行移動(dòng)|b|個(gè)單位,得到y(tǒng)=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)

由y=sinx的圖象利用圖象變換作函數(shù)y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當(dāng)周期變換和相位變換的先后順序不同時(shí),原圖象延x軸量伸縮量的區(qū)別。

4、反三角函數(shù):函數(shù)y=sinx,的反函數(shù)叫做反正弦函數(shù),記作x2,2y=arcsinx,它的定義域是[-1,

1],值域是-,.

22函數(shù)y=cosx,(x∈[0,π])的反應(yīng)函數(shù)叫做反余弦函數(shù),記作y=arccosx,它的定義域是[-1,1],值域是[0,π].

函數(shù)y=tanx,記作的反函數(shù)叫做反正切函數(shù),x2,222y=arctanx,它的定義域是(-

∞,+∞),值域是,.

高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)函數(shù)y=ctgx,[x∈(0,π)]的反函數(shù)叫做反余切函數(shù),記作y=arcctgx,它的定義域是(-∞,+∞),值域是(0,π).

II.競(jìng)賽知識(shí)要點(diǎn)

一、反三角函數(shù).

1.反三角函數(shù):反正弦函數(shù)yarcsinx是奇函數(shù),故arcsin(x)arcsinx,x1,1(一定要注明定義域,若x,,沒(méi)有x與y一一對(duì)應(yīng),故ysinx無(wú)反函數(shù))注:sin(arcsinx)x,x1,1,arcsinx,.

22反余弦函數(shù)yarccosx非奇非偶,但有arccos(x)arccos(x)2k,x1,1.注:①cos(arccosx)x,x1,1,arccosx0,.

②ycosx是偶函數(shù),yarccosx非奇非偶,而ysinx和yarcsinx為奇函數(shù).反正切函數(shù):yarctanx,定義域(,),值域(arctan(x)arctanx,x(,).

22,),ynatcrax是奇函數(shù),

注:tan(arctanx)x,x(,).

反余切函數(shù):yarccotx,定義域(,),值域(arotc,yc,)

22x是非奇非偶.

arccot(x)arccot(x)2k,x(,).注:①cot(arccotx)x,x(,).

1x)互為奇函數(shù),yarctanx同理為奇而yarccosx與yarccotx②yarcsinx與yarcsin(非奇非偶但滿足arccos(x)arccosx2k,x[1,1]arccotxarccot(x)2k,x[1,1].

正弦、余弦、正切、余切函數(shù)的解集:

a的取值范圍解集a的取值范圍解集①sinxa的解集②cosxa的解集

a>1=1x|x2karcsai,nkZ<1x|xk1karcsina,kZ

aa>1

a=1x|x2karccosa,kZ

aa<1x|xkarccosa,kZ

③tanxa的解集:x|xkarctana,kZ③coxta的解集:x|xkarccoat,kZ二、三角恒等式.

sin2n1組一ncoscos2cos4...cos2n12sin

組二

sin33sin4sin3cos34cos33cossin2sin2sinsincos2cos2k1ncos2kcos2cos4cos8cos2nsin2sinn2n

高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)cos(xkd)cosxcos(xd)cos(xnd)k0nsin((n1)d)cos(xnd)

sindk0nsin(xkd)sinxsin(xd)sin(xnd)sin((n1)d)sin(xnd)

sindtan()tantantantantantan

1tantantantantantan組三三角函數(shù)不等式

sinx<x<tanx,x(0,2)f(x)sinx在(0,)上是減函數(shù)x若ABC,則x2y2z22yzcosA2xzcosB2xycosC

高三數(shù)學(xué)總復(fù)習(xí)三角函數(shù)

友情提示:本文中關(guān)于《高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.7334dd.com/gongwen/628394.html