生物化學(xué)超全復(fù)習(xí)資料考試總結(jié)
單體酶由一條多肽鏈組成寡聚酶由多個(gè)亞基靠非共價(jià)鍵以共價(jià)鍵聚合而成的酶多酶體系由代謝上相互聯(lián)系的幾種酶聚合形成多酶復(fù)合物
單純酶僅由多肽鏈構(gòu)成結(jié)合酶由蛋白質(zhì)和非蛋白質(zhì)兩部分構(gòu)成,前者稱酶蛋白,后者稱輔助因子,兩者結(jié)合形成的結(jié)合酶形式稱為全酶必需基團(tuán)與酶的活性密切相關(guān)的基團(tuán)分為結(jié)合基團(tuán)和催化基團(tuán)
有特定空間結(jié)構(gòu)的區(qū)域,能與底物特異結(jié)合并將底物轉(zhuǎn)化為產(chǎn)物,這一區(qū)域稱為酶的活性中心或活性部位酶促反應(yīng)的特點(diǎn)高度不穩(wěn)定性,高度催化效率,高度特異性(絕對(duì)相對(duì)立體異構(gòu)),酶活力的可調(diào)性抑制劑能使酶活性下降而不引起酶蛋白變性的物質(zhì)
1、不可逆抑制抑制劑與酶的必需有基團(tuán)以共價(jià)鍵結(jié)合引起酶活性喪失,不能用透析、超濾等物理方法除去抑制劑而使酶復(fù)活的:硫基酶(重金屬離子)絲氨酸酶(有機(jī)磷化合物,膽堿酯酶,解磷定解救)2、可逆抑制常以非共價(jià)鍵與酶或酶-底物復(fù)合物的特定區(qū)域結(jié)合,從而使酶的活性降低或喪失①競(jìng)爭(zhēng)性抑制抑制物與底物結(jié)構(gòu)類似而引起的抑制,兩者相互競(jìng)爭(zhēng)與酶的活性中心結(jié)合(丙二酸對(duì)琥珀酸脫氫酶的抑制,磺胺類藥物)②非競(jìng)爭(zhēng)性抑制抑制物與活性中心以外的必須基團(tuán)相結(jié)合,使酶的構(gòu)象改變而失去活性③反競(jìng)爭(zhēng)性抑制抑制物與酶和底物的復(fù)合物結(jié)合而起到抑制。
酶原沒有活性的酶的前體酶原在一定條件下被水解掉部分肽段,并使剩余肽鏈構(gòu)象改變而轉(zhuǎn)變成有活性的酶,稱為酶原的激活,其實(shí)質(zhì)是酶活性中心的形成或暴露的過程其生理意義:避免活性酶對(duì)細(xì)胞自身進(jìn)行消化,并使之在特定部位發(fā)揮作用,酶的儲(chǔ)存形式
同工酶能催化相同化學(xué)反應(yīng),但酶分子的組成、結(jié)構(gòu)、理化性質(zhì)乃至免疫學(xué)性質(zhì)或電泳行為均不同的一組酶乳酸脫氫酶有5種同工酶,LDH1在心肌含量最高,LDH5在肝臟含量最高
糖的生理功能1、氧化供能2、提供合成體內(nèi)其他物質(zhì)的原料3、組成人體組織結(jié)構(gòu)的重要成分4、參與組成特殊功能的糖蛋白5、形成許多重要的生物活性物質(zhì)
葡萄糖或糖原在無氧或缺氧條件下,分解為乳酸同時(shí)產(chǎn)生少量能量的過程稱為糖的無氧分解或糖酵解胞質(zhì)糖酵解過程葡萄糖或糖原轉(zhuǎn)變?yōu)楣?1,6-二磷酸(已糖激酶,中間產(chǎn)物葡糖-6-磷酸,果糖磷酸激酶-1)裂解為2分子磷酸丙糖轉(zhuǎn)變?yōu)?分子丙酮酸(唯一的脫氫反應(yīng),丙酮酸激酶)還原生成2分子乳酸
1分子葡萄糖酵解為2分乳糖,凈產(chǎn)生2分子ATP(共4個(gè)ATP)三個(gè)酶:已糖激酶或葡萄糖激酶、果糖磷酸激酶-1和丙酮酸激酶,反應(yīng)不可逆
糖酵解的生理意義是機(jī)體相對(duì)缺氧時(shí)補(bǔ)充能量的一種有效方式某些組織在有氧時(shí)也通過糖酵解供能糖的有氧氧化葡萄糖在有氧條件下徹底氧化分解生成CO2和H20并釋放大量能量的過程
葡萄糖或糖原在細(xì)胞質(zhì)內(nèi)氧化生成丙酮酸;丙酮酸進(jìn)入線粒體氧化脫羧生成乙酰輔酶A(丙酮酸脫氫酶系);乙酰輔酶A進(jìn)入三羧酸循環(huán),徹底氧化稱為CO2和水
三羧酸循環(huán)①乙酰輔酶A與草酰乙酸縮合生成檸檬酸(檸檬酸合酶)反應(yīng)不可逆②檸檬酸經(jīng)順烏頭酸生成異檸檬酸③異檸檬酸氧化脫羧生成α-酮戊二酸(異檸檬酸脫氫酶,第一次氧化脫羧)④α-酮戊二酸氧化脫羧生成琥珀酰(α-酮戊二酸脫氫酶系)⑤琥珀酰輔酶A轉(zhuǎn)變?yōu)殓晁崛人嵫h(huán)中唯一的一次底物水平磷酸化⑥琥珀酸脫氫轉(zhuǎn)變?yōu)檠雍魉嵘?分子ATP⑦延胡索酸轉(zhuǎn)變?yōu)樘O果酸⑧蘋果酸脫氫生成草酰乙酸生成3分子ATP三羧酸循環(huán)的特點(diǎn)①是乙酰輔酶A的徹底氧化過程②有三個(gè)關(guān)鍵酶③從草酰乙酸開始,最后又生成草酰乙酸糖有氧氧化生理意義1、糖有氧氧化是機(jī)體獲取能量的主要方式2、三羧酸循環(huán)是體內(nèi)糖、脂肪、和蛋白質(zhì)三大營(yíng)養(yǎng)物質(zhì)分解代謝的最終代謝通路3、三羧酸循環(huán)又是糖、脂肪和氨基酸代謝聯(lián)系的樞紐一分子葡萄糖徹底氧化分解可產(chǎn)生36/38分子ATP,7個(gè)關(guān)鍵酶,3個(gè)與糖酵解相同
磷酸戊糖途徑以葡萄糖-6-磷酸為起點(diǎn),直接進(jìn)行脫氫和脫羧反應(yīng),生成大量的NADPH和磷酸核糖(戊糖)兩個(gè)階段:不可逆的氧化階段和可逆的非氧化階段
糖原合成由單糖合成糖原的過程葡萄糖生成葡糖-6-磷酸,在變位酶的作用下轉(zhuǎn)變?yōu)槠咸?1-磷酸,在UDPG焦磷酸化酶作用下生成尿苷二磷酸(UDPG)UDPG作為葡萄糖供體,是活性形式,UDPG參與合成糖原
糖原合成特點(diǎn)1、糖原合成需要糖原引物至少含4個(gè)葡萄糖(殘基)的α-1,4-糖苷鍵作為引物2、糖原合酶是糖原合成過程中的關(guān)鍵酶3、糖原支鏈結(jié)構(gòu)的形成需要分支酶的作用4、糖原合成過程需要消耗能量(2個(gè)高能磷酸鍵)5、糖原合成全過程是在胞質(zhì)中進(jìn)行
糖原分解(肝糖原分解)糖原分解為葡萄糖的過程糖原封面可偶爾問哦葡萄-1-磷酸脫支酶的作用葡糖-1-磷酸在變位酶作用下轉(zhuǎn)變?yōu)槠咸?6-磷酸酶葡糖-6-磷酸酶水解為葡萄糖
糖原分解特點(diǎn)1、糖原磷酸化酶是糖原分解過程中的關(guān)鍵酶2、脫支酶轉(zhuǎn)移3個(gè)葡萄糖殘基至鄰近糖鏈末端,并
催化分支點(diǎn)α-1,6-糖苷鍵水解,生成游離葡萄糖3、糖原分解全過程是在胞質(zhì)內(nèi)進(jìn)行
糖異生由非糖物質(zhì)轉(zhuǎn)變?yōu)槠咸烟堑倪^程基本上循糖酵解的逆過程空腹血糖3..89-6.11mmol/L
血糖的來源和去路食物多糖的消化吸收;空腹時(shí)肝糖原的分解;饑餓時(shí)糖異生氧化分解供能,進(jìn)食后部分糖合成為肝糖原和肌糖原貯存起來;代謝轉(zhuǎn)變?yōu)橹、核糖、葡糖醛酸和非必需氨基酸的碳架?/p>
血糖濃度的調(diào)節(jié)肝臟(餐后肝糖原合成增加;空腹肝糖原分解;饑餓糖異生)腎臟(腎糖閾,超過隨尿排出)神經(jīng)激素(降低血糖,胰島素;升高血糖,腎上腺素、胰高血糖素、糖皮質(zhì)激素、生長(zhǎng)素、甲狀腺激素)生物氧化主要是指糖、脂類和蛋白質(zhì)等營(yíng)養(yǎng)物在體內(nèi)氧化分解逐步釋放能量,最終生成CO2和H2O的過程生物氧化特點(diǎn)在近中性、37℃的水溶液中進(jìn)行反應(yīng),需酶催化,有機(jī)酸脫羧產(chǎn)生CO2(α-單純脫羧β-單純脫羧α-氧化脫羧β-氧化脫羧),H與O2間接反應(yīng)產(chǎn)生H2O,逐步放能,很大部分用于形成高能化合物
呼吸鏈?zhǔn)嵌ㄎ挥诰粒體內(nèi)膜上的一組排列有序的遞氫體和遞電子體(酶與輔酶)構(gòu)成的鏈狀傳遞體系,也稱電子傳遞鏈功能把底物脫下的2H經(jīng)一系列中間傳遞提的逐步傳遞,最終交給氧生成水,并釋放大量的能量驅(qū)動(dòng)ADP磷酸化生成ATP
呼吸鏈主要成分及其作用1、煙酰胺脫氫酶類及其輔酶(催化底物分解脫氫)2、黃素蛋白酶類及其輔基(催化底物分解脫氫)3、鐵硫蛋白類(電子傳遞體)4、泛醌Q(遞氫體)5、色素細(xì)胞類(電子傳遞體)NADH氧化呼吸鏈代謝物在相應(yīng)酶催化下脫2H交給NAD+生成NADH+H+,后者進(jìn)入NADH氧化呼吸鏈將與電子依次經(jīng)過FMN、Fe-S、Q和Cyt類傳遞,最后交給1/2O2生成H2O驅(qū)動(dòng)ADP磷酸化生成3分子ATPNAD+→[FMN(Fe-S)]→CoQ→Cytb(Fe-S)→Cytc1→Cytc→Cytaa3→1/2O2
FADH2氧化呼吸鏈(琥珀酸氧化呼吸鏈)部分代謝物分解脫下的2H交給其輔基FAD接受,進(jìn)入FADH2氧化呼吸鏈,與NADH差別在于FADH2直接將氫傳給泛醌。生成2分子ATP
[FAD(Fe-S)](琥珀酸)→CoQ→Cytb(Fe-S)→Cytc1→Cytc→Cytaa3→1/2O2
胞液中NADH+H+氧化胞液中生成的NADH不能自由透過線粒體內(nèi)膜,而必須通過某種轉(zhuǎn)運(yùn)機(jī)制進(jìn)入線粒體1、甘油-3-磷酸穿梭肌肉及神經(jīng)組織中進(jìn)入FADH2氧化呼吸鏈,生成2分子ATP1葡萄糖可生成36ATP2、蘋果酸-天冬氨酸穿梭心肌和肝組織進(jìn)入NADH氧化呼吸鏈,生成3分子ATP1葡萄糖可生成38ATPATP的生成:1、底物水平磷酸化在分解代謝過程中,底物因脫氫、脫水等作用而使能量在分子內(nèi)部重新分布,形成高能磷酸化合物,然后將高能磷酸基團(tuán)轉(zhuǎn)移給ADP形成ATP的過程2、氧化磷酸化在生物氧化過程中,代謝物脫下的氫經(jīng)呼吸鏈氧化生成水時(shí),所釋放的能量能夠歐聯(lián)ADP磷酸化生成ATP
影響氧化磷酸化因素1、抑制劑:呼吸鏈抑制劑,解偶聯(lián)劑2、ADP調(diào)節(jié)3、甲狀腺激素4、線粒體DNA突變血脂的來源和去路外源性:食物中的脂類,內(nèi)源性:體內(nèi)合成的之類和脂庫(kù)動(dòng)員釋放氧化供能,進(jìn)入脂庫(kù)貯存,構(gòu)成生物膜,轉(zhuǎn)變成其他物質(zhì)運(yùn)輸形式:脂蛋白血漿脂蛋白組成:脂類+載脂蛋白乳糜微粒(CM)在小腸粘膜細(xì)胞中合成,是運(yùn)輸外源性三酰甘油的主要形式極低密度脂蛋白(VLDL)肝臟中合成,運(yùn)輸內(nèi)源性三酰甘油
低密度脂蛋白(LDL)血漿中由VLDL轉(zhuǎn)變而來,轉(zhuǎn)運(yùn)肝臟合成的內(nèi)源性膽固醇至肝外健康人空腹時(shí)主要高密度脂蛋白(HDL)在肝臟合成,部分在小腸,將肝外膽固醇逆向轉(zhuǎn)運(yùn)至肝內(nèi)代謝
三酰甘油的分解1、脂肪動(dòng)員貯存在脂庫(kù)中的三酰甘油,被脂肪酶逐步分解為有利脂肪酸及甘油并釋放入血供給給全身各組織氧化利用的過程三酰甘油脂肪酶是限速酶2、甘油的代謝3、脂肪酸的分解:①脂肪的活化(胞質(zhì))②脂酰CoA進(jìn)入線粒體(穿梭--需要肉堿為載體)③脂肪酸的β-氧化(線粒體)④乙酰CoA進(jìn)入三羧酸循環(huán)徹底氧化(線粒體)脂肪酸能量生成17/2×N-7N為?碳
乙酰乙酸、β-羥丁酸及丙酮是脂肪酸在肝臟氧化分解時(shí)所形成的特有的中間代謝物
膽固醇合成肝臟合成能力最強(qiáng),在胞質(zhì)和內(nèi)質(zhì)網(wǎng)中進(jìn)行原料:乙酰CoA,NADPH+H+供氫,ATP供能過程:甲羥戊酸合成鯊烯合成膽固醇合成膽固醇轉(zhuǎn)化:膽汁酸類固醇激素維生素D3
必需氨基酸:異亮氨酸甲硫氨酸亮氨酸色氨酸苯丙氨酸蘇氨酸賴氨酸半必需氨基酸:酪氨酸半胱氨酸氨基酸的來源:食物蛋白的消化吸收組織蛋白的分解合成非必需氨基酸去路:合成組織蛋白氨基酸的一般代謝氨基酸的特殊代謝
氨基酸的脫氨基作用1、轉(zhuǎn)氨基作用特點(diǎn):只發(fā)生氨基的轉(zhuǎn)移,無游離氨產(chǎn)生;轉(zhuǎn)氨基反應(yīng)可逆維生素B6的磷酸酯,起氨基傳遞體作用丙氨酸氨基轉(zhuǎn)移酶和天冬氨基轉(zhuǎn)移酶最重要ALT在肝細(xì)胞內(nèi)活性最高,AST在心肌細(xì)胞內(nèi)活性最高臨床常通過測(cè)定血清ALT或AST活性變化幫助診斷急性肝炎或心肌梗死2、氧化脫氨基作用氨基酸在酶的作用下,脫氫氧化、水解脫氫,產(chǎn)生游離氨和α-酮酸L-谷氨酸脫氫酶和氨基酸氧化酶特
點(diǎn):在體內(nèi)分布廣、活性高、特異性強(qiáng),反應(yīng)可逆,其逆過程是胞內(nèi)合成谷氨酸的主要方式3、聯(lián)合脫氨基作用指把轉(zhuǎn)氨基作用與L-谷氨酸氧化脫氨基作用歐聯(lián)起來進(jìn)行生成α-酮酸和氨的過程反應(yīng)可逆,其逆過程是合成非必需氨基酸的主要途徑主要在肝腎組織中4、其他脫氨基作用:絲氨酸經(jīng)脫水氨基作用生成丙酮酸和氨;半胱氨酸經(jīng)脫硫化氫脫氨基作用生成丙酮酸和氨;天冬氨酸還可經(jīng)直接脫氫基作用生成延胡索酸和氨
氨的來源氨基酸脫氫基作用;腸道腐敗作用和尿素分解;胺類物質(zhì)氧化;腎小管上皮細(xì)胞水解谷氨酰胺產(chǎn)NH3堿性尿利于NH3被吸收入血,酸性尿利于NH4+排出體外去路在肝臟合成尿素;合成谷氨酰胺;合成其他含氮物氨的轉(zhuǎn)運(yùn)1、谷氨酰胺運(yùn)氨作用儲(chǔ)氨、運(yùn)氨、解除氨的一種形式2、葡萄糖-丙氨酸循環(huán)使肌肉中的氨以無毒的避難算形式運(yùn)送到肝;使肝組織為肌肉活動(dòng)提供能量
鳥氨酸循環(huán)首先鳥氨酸與氨及CO2結(jié)合生成瓜氨酸,然后瓜氨酸再接受1分子氨生成精氨酸,精氨酸進(jìn)一步水解產(chǎn)生1分子尿素,并重新生成鳥氨酸,后者進(jìn)入下一輪循環(huán)
尿素的合成過程1、氨基甲酰磷酸的合成:在肝細(xì)胞線粒體內(nèi),NH3和CO2在氨基甲酰磷酸合成酶Ⅰ(CPS-Ⅰ)的催化下,由ATP提供能量,縮合成氨基甲酰磷酸。反應(yīng)不可逆2、瓜氨酸的合成:線粒體氨基甲酰磷酸經(jīng)鳥氨酸甲酰胺轉(zhuǎn)移酶催化,將氨基甲酰轉(zhuǎn)移至鳥氨酸生成瓜氨酸,不可逆3、精氨酸的合成:瓜氨酸轉(zhuǎn)運(yùn)至胞質(zhì)內(nèi),受精氨酸代琥珀酸合成酶催化,與天冬氨酸進(jìn)行縮合生成精氨酸代琥珀酸,同志伴有1分子ATP分解為AMP和PPi,精氨酸代琥珀酸再經(jīng)裂解酶催化,裂解為精氨酸和延胡索酸4、精氨酸水解生成尿素:在報(bào)紙內(nèi),精氨酸受精氨酸酶催化水解為尿素和鳥氨酸。鳥氨酸通過線粒體內(nèi)膜上的載體蛋白又轉(zhuǎn)運(yùn)入線粒體,繼續(xù)與氨基甲酰磷酸反應(yīng)生成瓜氨酸,進(jìn)入下一輪循環(huán)。尿素則通過血液循環(huán)送到腎臟隨尿排出核苷酸的功能①dNTP和NTP分別作為合成核酸(DNA.RNA)的原料②ATP作為生物體的直接供能物質(zhì)③UDP-葡萄糖、CDP-膽堿分別為糖原、甘油磷脂合成的活性中間體④AMP是某些輔酶或輔基NAD+、NADP+、HSCoA和FAD的組成成分⑤cAMP、cGMP作為激素的第二信使,參與細(xì)胞信息傳遞尿酸是人體內(nèi)嘌呤堿分解的終產(chǎn)物,正常含量0.12-0.36mmol/L核苷酸的合成途徑:從頭合成途徑和補(bǔ)救合成途徑
腺嘌呤核苷酸和鳥嘌呤核苷酸的生成以IMP(次黃嘌呤核酸)為起點(diǎn),在合成酶催化下,由GTP功能,IMP與天冬氨酸縮合生成腺苷酸代琥珀酸中間物,然后在裂解酶催化下釋出延胡索酸生成腺嘌呤核苷酸(AMP)。IMP也可在脫氫酶催化下,發(fā)生加水脫氫反應(yīng),使嘌呤環(huán)上C-2氧化生成黃嘌呤核苷酸(XMP);后者進(jìn)一步受鳥嘌呤核苷酸合成酶催化,接受谷氨酰胺提供的氨基生成鳥嘌呤核苷酸(GMP),該反應(yīng)需ATP供能。AMP和GMP可連續(xù)發(fā)生兩次磷酸化進(jìn)一步生成ATP和GTP,作為合成RNA的原料。嘌呤核苷酸的從頭合成途徑主要在肝內(nèi),其次是小腸黏膜和胸腺組織。
抗代謝物指在化學(xué)結(jié)構(gòu)上與政策代謝物相似,能夠競(jìng)爭(zhēng)性拮抗正常代謝過程的物質(zhì)。機(jī)理:通過與政策代謝物相互競(jìng)爭(zhēng)與酶結(jié)合,以干擾或一致核苷酸的正常代謝,進(jìn)而阻斷核酸和蛋白質(zhì)的生物合成
嘧啶核苷酸的從頭合成:與嘌呤核苷酸的從頭合成途徑不同,嘧啶核苷酸的從頭合成石先由谷氨酰胺提供氨基,與CO2和天冬氨酸結(jié)合生成嘧啶環(huán);后者再與PRPP提供的R-5"-P結(jié)合生成尿嘧啶核苷酸(UMP);UMP再逐步轉(zhuǎn)變?yōu)榘杖姿幔–TP)。三個(gè)階段:嘧啶環(huán)的合成,UMP的合成,UMP轉(zhuǎn)變?yōu)镃TP
脫氧胸苷酸(dTMP)的合成:dTMP是在dUMP水平上使C5發(fā)生甲基化而生成,反應(yīng)需胸苷酸合酶催化,由N5,N10-甲烯基四氫葉酸提供甲基。dUMP可由dUDP水解去磷酸而生成,dUMP也可由dCMP水解脫氨基而成基因是核酸分子中貯存遺傳信息的基本單位,含有編碼蛋白質(zhì)多肽鏈或RNA所必需的全部核苷酸序列;蚪M細(xì)胞或生物體中全部遺傳信息的總和轉(zhuǎn)錄以DNA為模板合成RNA,將遺傳信息轉(zhuǎn)抄給RNA分子復(fù)制以親代DNA為模板合成子代DNA,將遺傳信息準(zhǔn)確地從親代傳遞給子代
翻譯由mRNA中的核苷酸堿基序列所組成的遺傳密碼決定蛋白質(zhì)中的氨基酸排列順序基因表達(dá)通過轉(zhuǎn)錄和翻譯過程,基因的遺傳信息在細(xì)胞內(nèi)合成為有特定功能的蛋白質(zhì)遺傳信息從DNA經(jīng)RNA流向蛋白質(zhì)的過程,稱為遺傳信息傳遞的中心法則逆轉(zhuǎn)錄以RNA為模板指導(dǎo)DNA的合成
半保留復(fù)制新形成的子代分子中的一條鏈來自親代DNA保留下來的,另一條鏈?zhǔn)切潞铣傻,這樣生成的子代DNA分子與親代DNA分子的堿基排列順序完全相同
參與DNA復(fù)制的主要酶類1、解旋、解鏈酶類①DNA拓?fù)洚悩?gòu)酶②DNA解鏈酶③單鏈DNA結(jié)合蛋白2、引物酶與引發(fā)3、DNA聚合酶4、DNA連接酶DNA復(fù)制的過程1、起始:DNA雙鏈解開為復(fù)制叉,形成引發(fā)體并合成RNA引物2、延長(zhǎng):在RNA引物的3"-OH
上,DNApolⅢ以4種dNTP為原料,分別以DNA的兩條鏈為模板,由5"→3"方向催化合成互補(bǔ)DNA新鏈3、終止:需要DNApolⅠ切除引物、填補(bǔ)空隙,然后由DNA連接酶連接封口
逆轉(zhuǎn)錄酶催化合成cDNA從單鏈RNA到DNA雙鏈的合成可分為三步:在同一種逆轉(zhuǎn)錄酶作用下,首先以病毒基因組RNA為模板,催化dNTP聚合生成互補(bǔ)DNA單鏈面產(chǎn)物是RNA-DNA雜化雙鏈;然后催化雜化雙鏈中RNA水解去除;再以剩下的單戀DNA作為模板,合成第2條DNA互補(bǔ)鏈,即cDNA雙鏈
逆轉(zhuǎn)錄酶有三種催化活性:①RNA指導(dǎo)的DNA合成酶②水解RNA-DNA雜化雙鏈中RNA的酶③DNA指導(dǎo)的DNA合成酶DNA的突變DNA核苷酸堿基序列永久的改變,也稱DNA損傷
點(diǎn)突變是DNA分子上一個(gè)堿基的變異。1、轉(zhuǎn)換:同型堿基變異2、顛換:異型堿基變異
切除修護(hù)在一系列酶的作用下,將DNA分子中受損部分切除,并以完整的另一條鏈為模板進(jìn)行修補(bǔ)合成,取代被切去的部分,使DNA恢復(fù)正常結(jié)構(gòu)的過程。這是細(xì)胞內(nèi)最重要和有效的修復(fù)方式轉(zhuǎn)錄所需要的原料為四種核糖核苷三磷酸:ATP\\GTP\\CTP\\UTP作為RNA聚合酶的底物
轉(zhuǎn)錄的過程1、起始:σ亞基帶動(dòng)RNA聚合酶以全酶形式結(jié)合在DNA的轉(zhuǎn)錄起始部位,促使DNA雙鏈局部解開,使第一個(gè)核苷酸鏈接上去,啟動(dòng)轉(zhuǎn)錄2、延長(zhǎng):由核心酶沿著DNA模板鏈3"→5"方向滑動(dòng),催化合成5"→3"方向的RNA鏈3、終止:①依賴ρ因子的轉(zhuǎn)錄終止②依賴莖環(huán)結(jié)構(gòu)的終止起始密碼子AUG終止密碼子UAA\\UAG\\UGA
遺傳密碼的特點(diǎn)1、遺傳密碼閱讀的方向性(5"→3"N端→C端)2、遺傳密碼的連續(xù)性(插入一個(gè)堿基或缺失一個(gè)堿基的突變時(shí),都會(huì)引起mRNA的閱讀框移位,造成翻譯產(chǎn)物氨基酸順序的改變)3、遺傳密碼的簡(jiǎn)并性(除了色氨酸和甲硫氨酸各有1個(gè)密碼子外,其余每種氨基酸都有2-6個(gè)密碼子。一種氨基酸具有2個(gè)或2個(gè)以上密碼子的現(xiàn)象稱為遺傳密碼的簡(jiǎn)并性)4、遺傳密碼的通用性(從原核生物到人類都共用同一套遺傳密碼)tRNA的作用既能辨認(rèn)mRNA密碼子,又能結(jié)合氨基酸的連接物
擺動(dòng)配對(duì)tRNA分子的反密碼子辨認(rèn)mRNA上的密碼子是,按5"→3"方向,反密碼子的第1位堿基與密碼子的第3位堿基互補(bǔ)結(jié)合時(shí),有時(shí)并不嚴(yán)格遵守常見的堿基配對(duì)規(guī)律
核糖體是由幾種rRNA與數(shù)十種蛋白質(zhì)共同構(gòu)成的超大分子復(fù)合體。由大小兩個(gè)亞基組成細(xì)胞質(zhì)中的核糖體有兩類附著于糙面內(nèi)質(zhì)網(wǎng)游離于胞質(zhì)內(nèi)
蛋白質(zhì)生物合成從核糖體大小的亞基聚合在mRNA5"端AUG部位開始,沿著mRNA模板鏈5"→3"方向移動(dòng),由tRNA反密碼子通過堿基互補(bǔ)配對(duì)“閱讀”mRNA三聯(lián)體遺傳密碼并攜帶特定氨基酸在核糖體上“對(duì)號(hào)入座”,將氨基酸N端→C端方向鏈接起來構(gòu)成多肽鏈,直至核糖體在mRNA3"端遇到終止信號(hào)而使大小亞基解體為止肝臟在脂類代謝中的作用1、促進(jìn)脂類的消化吸收2、肝臟是脂肪酸分解、合成和改造的主要場(chǎng)所3、肝臟是合成脂蛋白和磷脂的主要場(chǎng)所4、肝臟是膽固醇代謝的重要器官
肝臟在蛋白質(zhì)代謝1、肝臟是氨基酸分解的主要場(chǎng)所2、肝臟是合成蛋白質(zhì)的重要器官3、合成尿素以解氨毒肝臟在維生素1、促進(jìn)脂溶性維生素的吸收2、貯存多種維生素3、參與多種B族維生素代謝轉(zhuǎn)變?yōu)檩o酶膽酸和鵝脫氧膽酸以膽固醇為原料直接合成,稱為初級(jí)膽汁酸脫氧膽酸和石膽酸在腸菌作用下轉(zhuǎn)變而成,稱為次級(jí)膽汁酸
膽汁酸的腸肝循環(huán)各種膽汁酸隨膽汁分泌排入腸道后,只有一小部分受腸菌作用后排出體外,極大部分膽汁酸又重吸收經(jīng)門靜脈回到肝臟,再隨膽汁分泌排入腸道。通過膽汁酸的腸肝循環(huán),每天循環(huán)6~12次,可使有限的膽汁酸被反復(fù)利用,以能最大限度地發(fā)揮膽汁酸鹽的作用。彌補(bǔ)膽汁酸的不足,有利脂類消化吸收,還可維持膽汁中膽固醇的溶解狀態(tài)
膽汁酸的功能1、促進(jìn)脂類消化與吸收2、抑制膽固醇在膽汁中析出沉淀(結(jié)石)
擴(kuò)展閱讀:生物化學(xué)超全復(fù)習(xí)資料考試總結(jié)
單體酶由一條多肽鏈組成寡聚酶由多個(gè)亞基靠非共價(jià)鍵以共價(jià)鍵聚合而成的酶多酶體系由代謝上相互聯(lián)系的幾種酶聚合形成多酶復(fù)合物
單純酶僅由多肽鏈構(gòu)成結(jié)合酶由蛋白質(zhì)和非蛋白質(zhì)兩部分構(gòu)成,前者稱酶蛋白,后者稱輔助因子,兩者結(jié)合形成的結(jié)合酶形式稱為全酶必需基團(tuán)與酶的活性密切相關(guān)的基團(tuán)分為結(jié)合基團(tuán)和催化基團(tuán)
有特定空間結(jié)構(gòu)的區(qū)域,能與底物特異結(jié)合并將底物轉(zhuǎn)化為產(chǎn)物,這一區(qū)域稱為酶的活性中心或活性部位酶促反應(yīng)的特點(diǎn)高度不穩(wěn)定性,高度催化效率,高度特異性(絕對(duì)相對(duì)立體異構(gòu)),酶活力的可調(diào)性抑制劑能使酶活性下降而不引起酶蛋白變性的物質(zhì)
1、不可逆抑制抑制劑與酶的必需有基團(tuán)以共價(jià)鍵結(jié)合引起酶活性喪失,不能用透析、超濾等物理方法除去抑制劑而使酶復(fù)活的:硫基酶(重金屬離子)絲氨酸酶(有機(jī)磷化合物,膽堿酯酶,解磷定解救)
2、可逆抑制常以非共價(jià)鍵與酶或酶-底物復(fù)合物的特定區(qū)域結(jié)合,從而使酶的活性降低或喪失①競(jìng)爭(zhēng)性抑制抑制物與底物結(jié)構(gòu)類似而引起的抑制,兩者相互競(jìng)爭(zhēng)與酶的活性中心結(jié)合(丙二酸對(duì)琥珀酸脫氫酶的抑制,磺胺類藥物)②非競(jìng)爭(zhēng)性抑制抑制物與活性中心以外的必須基團(tuán)相結(jié)合,使酶的構(gòu)象改變而失去活性③反競(jìng)爭(zhēng)性抑制抑制物與酶和底物的復(fù)合物結(jié)合而起到抑制。
酶原沒有活性的酶的前體酶原在一定條件下被水解掉部分肽段,并使剩余肽鏈構(gòu)象改變而轉(zhuǎn)變成有活性的酶,稱為酶原的激活,其實(shí)質(zhì)是酶活性中心的形成或暴露的過程其生理意義:避免活性酶對(duì)細(xì)胞自身進(jìn)行消化,并使之在特定部位發(fā)揮作用,酶的儲(chǔ)存形式
同工酶能催化相同化學(xué)反應(yīng),但酶分子的組成、結(jié)構(gòu)、理化性質(zhì)乃至免疫學(xué)性質(zhì)或電泳行為均不同的一組酶乳酸脫氫酶有5種同工酶,LDH1在心肌含量最高,LDH5在肝臟含量最高
糖的生理功能1、氧化供能2、提供合成體內(nèi)其他物質(zhì)的原料3、組成人體組織結(jié)構(gòu)的重要成分4、參與組成特殊功能的糖蛋白5、形成許多重要的生物活性物質(zhì)
葡萄糖或糖原在無氧或缺氧條件下,分解為乳酸同時(shí)產(chǎn)生少量能量的過程稱為糖的無氧分解或糖酵解胞質(zhì)糖酵解過程葡萄糖或糖原轉(zhuǎn)變?yōu)楣?1,6-二磷酸(已糖激酶,中間產(chǎn)物葡糖-6-磷酸,果糖磷酸激酶-1)裂解為2分子磷酸丙糖轉(zhuǎn)變?yōu)?分子丙酮酸(唯一的脫氫反應(yīng),丙酮酸激酶)還原生成2分子乳酸
1分子葡萄糖酵解為2分乳糖,凈產(chǎn)生2分子ATP(共4個(gè)ATP)三個(gè)酶:已糖激酶或葡萄糖激酶、果糖磷酸激酶-1和丙酮酸激酶,反應(yīng)不可逆
糖酵解的生理意義是機(jī)體相對(duì)缺氧時(shí)補(bǔ)充能量的一種有效方式某些組織在有氧時(shí)也通過糖酵解供能糖的有氧氧化葡萄糖在有氧條件下徹底氧化分解生成CO2和H20并釋放大量能量的過程
葡萄糖或糖原在細(xì)胞質(zhì)內(nèi)氧化生成丙酮酸;丙酮酸進(jìn)入線粒體氧化脫羧生成乙酰輔酶A(丙酮酸脫氫酶系);乙酰輔酶A進(jìn)入三羧酸循環(huán),徹底氧化稱為CO2和水
三羧酸循環(huán)①乙酰輔酶A與草酰乙酸縮合生成檸檬酸(檸檬酸合酶)反應(yīng)不可逆②檸檬酸經(jīng)順烏頭酸生成異檸檬酸③異檸檬酸氧化脫羧生成α-酮戊二酸(異檸檬酸脫氫酶,第一次氧化脫羧)④α-酮戊二酸氧化脫羧生成琥珀酰(α-酮戊二酸脫氫酶系)⑤琥珀酰輔酶A轉(zhuǎn)變?yōu)殓晁崛人嵫h(huán)中唯一的一次底物水平磷酸化⑥琥珀酸脫氫轉(zhuǎn)變?yōu)檠雍魉嵘?分子ATP⑦延胡索酸轉(zhuǎn)變?yōu)樘O果酸⑧蘋果酸脫氫生成草酰乙酸生成3分子ATP
三羧酸循環(huán)的特點(diǎn)①是乙酰輔酶A的徹底氧化過程②有三個(gè)關(guān)鍵酶③從草酰乙酸開始,最后又生成草酰乙酸糖有氧氧化生理意義1、糖有氧氧化是機(jī)體獲取能量的主要方式2、三羧酸循環(huán)是體內(nèi)糖、脂肪、和蛋白質(zhì)三大營(yíng)養(yǎng)物質(zhì)分解代謝的最終代謝通路3、三羧酸循環(huán)又是糖、脂肪和氨基酸代謝聯(lián)系的樞紐一分子葡萄糖徹底氧化分解可產(chǎn)生36/38分子ATP,7個(gè)關(guān)鍵酶,3個(gè)與糖酵解相同
磷酸戊糖途徑以葡萄糖-6-磷酸為起點(diǎn),直接進(jìn)行脫氫和脫羧反應(yīng),生成大量的NADPH和磷酸核糖(戊糖)兩個(gè)階段:不可逆的氧化階段和可逆的非氧化階段
糖原合成由單糖合成糖原的過程葡萄糖生成葡糖-6-磷酸,在變位酶的作用下轉(zhuǎn)變?yōu)槠咸?1-磷酸,在UDPG焦磷酸化酶作用下生成尿苷二磷酸(UDPG)UDPG作為葡萄糖供體,是活性形式,UDPG參與合成糖原
糖原合成特點(diǎn)1、糖原合成需要糖原引物至少含4個(gè)葡萄糖(殘基)的α-1,4-糖苷鍵作為引物2、糖原合酶是糖原合成過程中的關(guān)鍵酶3、糖原支鏈結(jié)構(gòu)的形成需要分支酶的作用4、糖原合成過程需要消耗能量(2個(gè)高能磷酸鍵)5、糖原合成全過程是在胞質(zhì)中進(jìn)行
糖原分解(肝糖原分解)糖原分解為葡萄糖的過程糖原封面可偶爾問哦葡萄-1-磷酸脫支酶的作用葡糖-1-磷酸在變位酶作用下轉(zhuǎn)變?yōu)槠咸?6-磷酸酶葡糖-6-磷酸酶水解為葡萄糖
糖原分解特點(diǎn)1、糖原磷酸化酶是糖原分解過程中的關(guān)鍵酶2、脫支酶轉(zhuǎn)移3個(gè)葡萄糖殘基至鄰近糖鏈末端,并催化分支點(diǎn)α-1,6-糖苷鍵水解,生成游離葡萄糖3、糖原分解全過程是在胞質(zhì)內(nèi)進(jìn)行
糖異生由非糖物質(zhì)轉(zhuǎn)變?yōu)槠咸烟堑倪^程基本上循糖酵解的逆過程空腹血糖3..89-6.11mmol/L
血糖的來源和去路食物多糖的消化吸收;空腹時(shí)肝糖原的分解;饑餓時(shí)糖異生氧化分解供能,進(jìn)食后部分糖合成為肝糖原和肌糖原貯存起來;代謝轉(zhuǎn)變?yōu)橹、核糖、葡糖醛酸和非必需氨基酸的碳架?/p>
血糖濃度的調(diào)節(jié)肝臟(餐后肝糖原合成增加;空腹肝糖原分解;饑餓糖異生)腎臟(腎糖閾,超過隨尿排出)神經(jīng)激素(降低血糖,胰島素;升高血糖,腎上腺素、胰高血糖素、糖皮質(zhì)激素、生長(zhǎng)素、甲狀腺激素)生物氧化主要是指糖、脂類和蛋白質(zhì)等營(yíng)養(yǎng)物在體內(nèi)氧化分解逐步釋放能量,最終生成CO2和H2O的過程生物氧化特點(diǎn)在近中性、37℃的水溶液中進(jìn)行反應(yīng),需酶催化,有機(jī)酸脫羧產(chǎn)生CO2(α-單純脫羧β-單純脫羧α-氧化脫羧β-氧化脫羧),H與O2間接反應(yīng)產(chǎn)生H2O,逐步放能,很大部分用于形成高能化合物
呼吸鏈?zhǔn)嵌ㄎ挥诰粒體內(nèi)膜上的一組排列有序的遞氫體和遞電子體(酶與輔酶)構(gòu)成的鏈狀傳遞體系,也稱電子傳遞鏈功能把底物脫下的2H經(jīng)一系列中間傳遞提的逐步傳遞,最終交給氧生成水,并釋放大量的能量驅(qū)動(dòng)ADP磷酸化生成ATP
呼吸鏈主要成分及其作用1、煙酰胺脫氫酶類及其輔酶(催化底物分解脫氫)2、黃素蛋白酶類及其輔基(催化底物分解脫氫)3、鐵硫蛋白類(電子傳遞體)4、泛醌Q(遞氫體)5、色素細(xì)胞類(電子傳遞體)
NADH氧化呼吸鏈代謝物在相應(yīng)酶催化下脫2H交給NAD+生成NADH+H+,后者進(jìn)入NADH氧化呼吸鏈將與電子依次經(jīng)過FMN、Fe-S、Q和Cyt類傳遞,最后交給1/2O2生成H2O驅(qū)動(dòng)ADP磷酸化生成3分子ATPNAD+→[FMN(Fe-S)]→CoQ→Cytb(Fe-S)→Cytc1→Cytc→Cytaa3→1/2O2
FADH2氧化呼吸鏈(琥珀酸氧化呼吸鏈)部分代謝物分解脫下的2H交給其輔基FAD接受,進(jìn)入FADH2氧化呼吸鏈,與NADH差別在于FADH2直接將氫傳給泛醌。生成2分子ATP
[FAD(Fe-S)](琥珀酸)→CoQ→Cytb(Fe-S)→Cytc1→Cytc→Cytaa3→1/2O2
胞液中NADH+H+氧化胞液中生成的NADH不能自由透過線粒體內(nèi)膜,而必須通過某種轉(zhuǎn)運(yùn)機(jī)制進(jìn)入線粒體1、甘油-3-磷酸穿梭肌肉及神經(jīng)組織中進(jìn)入FADH2氧化呼吸鏈,生成2分子ATP1葡萄糖可生成36ATP2、蘋果酸-天冬氨酸穿梭心肌和肝組織進(jìn)入NADH氧化呼吸鏈,生成3分子ATP1葡萄糖可生成38ATPATP的生成:1、底物水平磷酸化在分解代謝過程中,底物因脫氫、脫水等作用而使能量在分子內(nèi)部重新分布,形成高能磷酸化合物,然后將高能磷酸基團(tuán)轉(zhuǎn)移給ADP形成ATP的過程2、氧化磷酸化在生物氧化過程中,代謝物脫下的氫經(jīng)呼吸鏈氧化生成水時(shí),所釋放的能量能夠歐聯(lián)ADP磷酸化生成ATP
影響氧化磷酸化因素1、抑制劑:呼吸鏈抑制劑,解偶聯(lián)劑2、ADP調(diào)節(jié)3、甲狀腺激素4、線粒體DNA突變血脂的來源和去路外源性:食物中的脂類,內(nèi)源性:體內(nèi)合成的之類和脂庫(kù)動(dòng)員釋放氧化供能,進(jìn)入脂庫(kù)貯存,構(gòu)成生物膜,轉(zhuǎn)變成其他物質(zhì)運(yùn)輸形式:脂蛋白血漿脂蛋白組成:脂類+載脂蛋白乳糜微粒(CM)在小腸粘膜細(xì)胞中合成,是運(yùn)輸外源性三酰甘油的主要形式極低密度脂蛋白(VLDL)肝臟中合成,運(yùn)輸內(nèi)源性三酰甘油
低密度脂蛋白(LDL)血漿中由VLDL轉(zhuǎn)變而來,轉(zhuǎn)運(yùn)肝臟合成的內(nèi)源性膽固醇至肝外健康人空腹時(shí)主要高密度脂蛋白(HDL)在肝臟合成,部分在小腸,將肝外膽固醇逆向轉(zhuǎn)運(yùn)至肝內(nèi)代謝
三酰甘油的分解1、脂肪動(dòng)員貯存在脂庫(kù)中的三酰甘油,被脂肪酶逐步分解為有利脂肪酸及甘油并釋放入血供給給全身各組織氧化利用的過程三酰甘油脂肪酶是限速酶2、甘油的代謝3、脂肪酸的分解:①脂肪的活化(胞質(zhì))②脂酰CoA進(jìn)入線粒體(穿梭--需要肉堿為載體)③脂肪酸的β-氧化(線粒體)④乙酰CoA進(jìn)入三羧酸循環(huán)徹底氧化(線粒體)脂肪酸能量生成17/2×N-7N為?碳
乙酰乙酸、β-羥丁酸及丙酮是脂肪酸在肝臟氧化分解時(shí)所形成的特有的中間代謝物
膽固醇合成肝臟合成能力最強(qiáng),在胞質(zhì)和內(nèi)質(zhì)網(wǎng)中進(jìn)行原料:乙酰CoA,NADPH+H+供氫,ATP供能過程:甲羥戊酸合成鯊烯合成膽固醇合成膽固醇轉(zhuǎn)化:膽汁酸類固醇激素維生素D3
必需氨基酸:異亮氨酸甲硫氨酸亮氨酸色氨酸苯丙氨酸蘇氨酸賴氨酸半必需氨基酸:酪氨酸半胱氨酸氨基酸的來源:食物蛋白的消化吸收組織蛋白的分解合成非必需氨基酸去路:合成組織蛋白氨基酸的一般代謝氨基酸的特殊代謝
氨基酸的脫氨基作用1、轉(zhuǎn)氨基作用特點(diǎn):只發(fā)生氨基的轉(zhuǎn)移,無游離氨產(chǎn)生;轉(zhuǎn)氨基反應(yīng)可逆維生素B6的磷酸酯,起氨基傳遞體作用丙氨酸氨基轉(zhuǎn)移酶和天冬氨基轉(zhuǎn)移酶最重要ALT在肝細(xì)胞內(nèi)活性最高,AST在心肌細(xì)胞內(nèi)活性最高臨床常通過測(cè)定血清ALT或AST活性變化幫助診斷急性肝炎或心肌梗死2、氧化脫氨基作用氨基酸在酶的作用下,脫氫氧化、水解脫氫,產(chǎn)生游離氨和α-酮酸L-谷氨酸脫氫酶和氨基酸氧化酶特點(diǎn):在體內(nèi)分布廣、活性高、特異性強(qiáng),反應(yīng)可逆,其逆過程是胞內(nèi)合成谷氨酸的主要方式3、聯(lián)合脫氨基作用指把轉(zhuǎn)氨基作用與L-谷氨酸氧化脫氨基作用歐聯(lián)起來進(jìn)行生成α-酮酸和氨的過程反應(yīng)可逆,其逆過程是合成非必需氨基酸的主要途徑主要在肝腎組織中4、其他脫氨基作用:絲氨酸經(jīng)脫水氨基作用生成丙酮酸和氨;半胱氨酸經(jīng)脫硫化氫脫氨基作用生成丙酮酸和氨;天冬氨酸還可經(jīng)直接脫氫基作用生成延胡索酸和氨
氨的來源氨基酸脫氫基作用;腸道腐敗作用和尿素分解;胺類物質(zhì)氧化;腎小管上皮細(xì)胞水解谷氨酰胺產(chǎn)NH3堿性尿利于NH3被吸收入血,酸性尿利于NH4+排出體外去路在肝臟合成尿素;合成谷氨酰胺;合成其他含氮物氨的轉(zhuǎn)運(yùn)1、谷氨酰胺運(yùn)氨作用儲(chǔ)氨、運(yùn)氨、解除氨的一種形式2、葡萄糖-丙氨酸循環(huán)使肌肉中的氨以無毒的避難算形式運(yùn)送到肝;使肝組織為肌肉活動(dòng)提供能量
鳥氨酸循環(huán)首先鳥氨酸與氨及CO2結(jié)合生成瓜氨酸,然后瓜氨酸再接受1分子氨生成精氨酸,精氨酸進(jìn)一步水解產(chǎn)生1分子尿素,并重新生成鳥氨酸,后者進(jìn)入下一輪循環(huán)
尿素的合成過程1、氨基甲酰磷酸的合成:在肝細(xì)胞線粒體內(nèi),NH3和CO2在氨基甲酰磷酸合成酶Ⅰ(CPS-Ⅰ)的催化下,由ATP提供能量,縮合成氨基甲酰磷酸。反應(yīng)不可逆2、瓜氨酸的合成:線粒體氨基甲酰磷酸經(jīng)鳥氨酸甲酰胺轉(zhuǎn)移酶催化,將氨基甲酰轉(zhuǎn)移至鳥氨酸生成瓜氨酸,不可逆3、精氨酸的合成:瓜氨酸轉(zhuǎn)運(yùn)至胞質(zhì)內(nèi),受精氨酸代琥珀酸合成酶催化,與天冬氨酸進(jìn)行縮合生成精氨酸代琥珀酸,同志伴有1分子ATP分解為AMP和PPi,精氨酸代琥珀酸再經(jīng)裂解酶催化,裂解為精氨酸和延胡索酸4、精氨酸水解生成尿素:在報(bào)紙內(nèi),精氨酸受精氨酸酶催化水解為尿素和鳥氨酸。鳥氨酸通過線粒體內(nèi)膜上的載體蛋白又轉(zhuǎn)運(yùn)入線粒體,繼續(xù)與氨基甲酰磷酸反應(yīng)生成瓜氨酸,進(jìn)入下一輪循環(huán)。尿素則通過血液循環(huán)送到腎臟隨尿排出核苷酸的功能①dNTP和NTP分別作為合成核酸(DNA.RNA)的原料②ATP作為生物體的直接供能物質(zhì)③UDP-葡萄糖、CDP-膽堿分別為糖原、甘油磷脂合成的活性中間體④AMP是某些輔酶或輔基NAD+、NADP+、HSCoA和FAD的組成成分⑤cAMP、cGMP作為激素的第二信使,參與細(xì)胞信息傳遞尿酸是人體內(nèi)嘌呤堿分解的終產(chǎn)物,正常含量0.12-0.36mmol/L核苷酸的合成途徑:從頭合成途徑和補(bǔ)救合成途徑
腺嘌呤核苷酸和鳥嘌呤核苷酸的生成以IMP(次黃嘌呤核酸)為起點(diǎn),在合成酶催化下,由GTP功能,IMP與天冬氨酸縮合生成腺苷酸代琥珀酸中間物,然后在裂解酶催化下釋出延胡索酸生成腺嘌呤核苷酸(AMP)。IMP也可在脫氫酶催化下,發(fā)生加水脫氫反應(yīng),使嘌呤環(huán)上C-2氧化生成黃嘌呤核苷酸(XMP);后者進(jìn)一步受鳥嘌呤核苷酸合成酶催化,接受谷氨酰胺提供的氨基生成鳥嘌呤核苷酸(GMP),該反應(yīng)需ATP供能。AMP和GMP可連續(xù)發(fā)生兩次磷酸化進(jìn)一步生成ATP和GTP,作為合成RNA的原料。嘌呤核苷酸的從頭合成途徑主要在肝內(nèi),其次是小腸黏膜和胸腺組織。
抗代謝物指在化學(xué)結(jié)構(gòu)上與政策代謝物相似,能夠競(jìng)爭(zhēng)性拮抗正常代謝過程的物質(zhì)。機(jī)理:通過與政策代謝物相互競(jìng)爭(zhēng)與酶結(jié)合,以干擾或一致核苷酸的正常代謝,進(jìn)而阻斷核酸和蛋白質(zhì)的生物合成嘧啶核苷酸的從頭合成:與嘌呤核苷酸的從頭合成途徑不同,嘧啶核苷酸的從頭合成石先由谷氨酰胺提供氨基,與CO2和天冬氨酸結(jié)合生成嘧啶環(huán);后者再與PRPP提供的R-5"-P結(jié)合生成尿嘧啶核苷酸(UMP);UMP再逐步轉(zhuǎn)變?yōu)榘杖姿幔–TP)。三個(gè)階段:嘧啶環(huán)的合成,UMP的合成,UMP轉(zhuǎn)變?yōu)镃TP
脫氧胸苷酸(dTMP)的合成:dTMP是在dUMP水平上使C5發(fā)生甲基化而生成,反應(yīng)需胸苷酸合酶催化,由N5,N10-甲烯基四氫葉酸提供甲基。dUMP可由dUDP水解去磷酸而生成,dUMP也可由dCMP水解脫氨基而成基因是核酸分子中貯存遺傳信息的基本單位,含有編碼蛋白質(zhì)多肽鏈或RNA所必需的全部核苷酸序列;蚪M細(xì)胞或生物體中全部遺傳信息的總和轉(zhuǎn)錄以DNA為模板合成RNA,將遺傳信息轉(zhuǎn)抄給RNA分子復(fù)制以親代DNA為模板合成子代DNA,將遺傳信息準(zhǔn)確地從親代傳遞給子代
翻譯由mRNA中的核苷酸堿基序列所組成的遺傳密碼決定蛋白質(zhì)中的氨基酸排列順序基因表達(dá)通過轉(zhuǎn)錄和翻譯過程,基因的遺傳信息在細(xì)胞內(nèi)合成為有特定功能的蛋白質(zhì)遺傳信息從DNA經(jīng)RNA流向蛋白質(zhì)的過程,稱為遺傳信息傳遞的中心法則逆轉(zhuǎn)錄以RNA為模板指導(dǎo)DNA的合成
半保留復(fù)制新形成的子代分子中的一條鏈來自親代DNA保留下來的,另一條鏈?zhǔn)切潞铣傻模@樣生成的子代DNA分子與親代DNA分子的堿基排列順序完全相同
參與DNA復(fù)制的主要酶類1、解旋、解鏈酶類①DNA拓?fù)洚悩?gòu)酶②DNA解鏈酶③單鏈DNA結(jié)合蛋白2、引物酶與引發(fā)3、DNA聚合酶4、DNA連接酶
DNA復(fù)制的過程1、起始:DNA雙鏈解開為復(fù)制叉,形成引發(fā)體并合成RNA引物2、延長(zhǎng):在RNA引物的3"-OH上,DNApolⅢ以4種dNTP為原料,分別以DNA的兩條鏈為模板,由5"→3"方向催化合成互補(bǔ)DNA新鏈3、終止:需要DNApolⅠ切除引物、填補(bǔ)空隙,然后由DNA連接酶連接封口逆轉(zhuǎn)錄酶催化合成cDNA從單鏈RNA到DNA雙鏈的合成可分為三步:在同一種逆轉(zhuǎn)錄酶作用下,首先以病毒基因組RNA為模板,催化dNTP聚合生成互補(bǔ)DNA單鏈面產(chǎn)物是RNA-DNA雜化雙鏈;然后催化雜化雙鏈中RNA水解去除;再以剩下的單戀DNA作為模板,合成第2條DNA互補(bǔ)鏈,即cDNA雙鏈
逆轉(zhuǎn)錄酶有三種催化活性:①RNA指導(dǎo)的DNA合成酶②水解RNA-DNA雜化雙鏈中RNA的酶③DNA指導(dǎo)的DNA合成酶DNA的突變DNA核苷酸堿基序列永久的改變,也稱DNA損傷
點(diǎn)突變是DNA分子上一個(gè)堿基的變異。1、轉(zhuǎn)換:同型堿基變異2、顛換:異型堿基變異
切除修護(hù)在一系列酶的作用下,將DNA分子中受損部分切除,并以完整的另一條鏈為模板進(jìn)行修補(bǔ)合成,取代被切去的部分,使DNA恢復(fù)正常結(jié)構(gòu)的過程。這是細(xì)胞內(nèi)最重要和有效的修復(fù)方式轉(zhuǎn)錄所需要的原料為四種核糖核苷三磷酸:ATP\\GTP\\CTP\\UTP作為RNA聚合酶的底物
轉(zhuǎn)錄的過程1、起始:σ亞基帶動(dòng)RNA聚合酶以全酶形式結(jié)合在DNA的轉(zhuǎn)錄起始部位,促使DNA雙鏈局部解開,使第一個(gè)核苷酸鏈接上去,啟動(dòng)轉(zhuǎn)錄2、延長(zhǎng):由核心酶沿著DNA模板鏈3"→5"方向滑動(dòng),催化合成5"→3"方向的RNA鏈3、終止:①依賴ρ因子的轉(zhuǎn)錄終止②依賴莖環(huán)結(jié)構(gòu)的終止起始密碼子AUG終止密碼子UAA\\UAG\\UGA
遺傳密碼的特點(diǎn)1、遺傳密碼閱讀的方向性(5"→3"N端→C端)2、遺傳密碼的連續(xù)性(插入一個(gè)堿基或缺失一個(gè)堿基的突變時(shí),都會(huì)引起mRNA的閱讀框移位,造成翻譯產(chǎn)物氨基酸順序的改變)3、遺傳密碼的簡(jiǎn)并性(除了色氨酸和甲硫氨酸各有1個(gè)密碼子外,其余每種氨基酸都有2-6個(gè)密碼子。一種氨基酸具有2個(gè)或2個(gè)以上密碼子的現(xiàn)象稱為遺傳密碼的簡(jiǎn)并性)4、遺傳密碼的通用性(從原核生物到人類都共用同一套遺傳密碼)tRNA的作用既能辨認(rèn)mRNA密碼子,又能結(jié)合氨基酸的連接物
擺動(dòng)配對(duì)tRNA分子的反密碼子辨認(rèn)mRNA上的密碼子是,按5"→3"方向,反密碼子的第1位堿基與密碼子的第3位堿基互補(bǔ)結(jié)合時(shí),有時(shí)并不嚴(yán)格遵守常見的堿基配對(duì)規(guī)律
核糖體是由幾種rRNA與數(shù)十種蛋白質(zhì)共同構(gòu)成的超大分子復(fù)合體。由大小兩個(gè)亞基組成細(xì)胞質(zhì)中的核糖體有兩類附著于糙面內(nèi)質(zhì)網(wǎng)游離于胞質(zhì)內(nèi)
蛋白質(zhì)生物合成從核糖體大小的亞基聚合在mRNA5"端AUG部位開始,沿著mRNA模板鏈5"→3"方向移動(dòng),由tRNA反密碼子通過堿基互補(bǔ)配對(duì)“閱讀”mRNA三聯(lián)體遺傳密碼并攜帶特定氨基酸在核糖體上“對(duì)號(hào)入座”,將氨基酸N端→C端方向鏈接起來構(gòu)成多肽鏈,直至核糖體在mRNA3"端遇到終止信號(hào)而使大小亞基解體為止肝臟在脂類代謝中的作用1、促進(jìn)脂類的消化吸收2、肝臟是脂肪酸分解、合成和改造的主要場(chǎng)所3、肝臟是合成脂蛋白和磷脂的主要場(chǎng)所4、肝臟是膽固醇代謝的重要器官
肝臟在蛋白質(zhì)代謝1、肝臟是氨基酸分解的主要場(chǎng)所2、肝臟是合成蛋白質(zhì)的重要器官3、合成尿素以解氨毒肝臟在維生素1、促進(jìn)脂溶性維生素的吸收2、貯存多種維生素3、參與多種B族維生素代謝轉(zhuǎn)變?yōu)檩o酶膽酸和鵝脫氧膽酸以膽固醇為原料直接合成,稱為初級(jí)膽汁酸脫氧膽酸和石膽酸在腸菌作用下轉(zhuǎn)變而成,稱為次級(jí)膽汁酸膽汁酸的腸肝循環(huán)各種膽汁酸隨膽汁分泌排入腸道后,只有一小部分受腸菌作用后排出體外,極大部分膽汁酸又重吸收經(jīng)門靜脈回到肝臟,再隨膽汁分泌排入腸道。通過膽汁酸的腸肝循環(huán),每天循環(huán)6~12次,可使有限的膽汁酸被反復(fù)利用,以能最大限度地發(fā)揮膽汁酸鹽的作用。彌補(bǔ)膽汁酸的不足,有利脂類消化吸收,還可維持膽汁中膽固醇的溶解狀態(tài)
膽汁酸的功能1、促進(jìn)脂類消化與吸收2、抑制膽固醇在膽汁中析出沉淀(結(jié)石)
友情提示:本文中關(guān)于《生物化學(xué)超全復(fù)習(xí)資料考試總結(jié)》給出的范例僅供您參考拓展思維使用,生物化學(xué)超全復(fù)習(xí)資料考試總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。