高中數(shù)學思想方法題型總結
201*年高考數(shù)學答題思想方法
1.函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考
慮定義域,其次是函數(shù)圖象。
2.面對含有參數(shù)的初等函數(shù)來說,在研究的時候應該抓住參數(shù)有沒有影響到函數(shù)的不變的性質。如所過的定點,二次函數(shù)的對稱軸或是;如果產(chǎn)生了影響,應考慮分類討論。
3.填空中出現(xiàn)不等式的題目(求最值、范圍、比較大小等),優(yōu)選特殊值法;
4.求參數(shù)的取值范圍,應該建立關于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
5.恒成立問題或是它的反面,可以轉化為最值問題,注意二次函數(shù)的應用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
6.圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式問題;
7.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
8.求橢圓或是雙曲線的離心率,建立關于a、b、c之間的關系等式即可(多觀察圖形,注意圖形中的垂直、中點等隱含條件);個別題目考慮圓錐曲線的第二定義。
9.三角函數(shù)求周期、單調區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
10、向量問題兩條主線:轉化為基底和建系,當題目中有明顯的對稱、垂直關系時,優(yōu)先選擇建系。
11.數(shù)列的題目與和有關,優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12.導數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
12.遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知(即有平方關系),可使用三角換元來完成;
13.絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;14.與圖象平移有關的,注意口訣“左加右減,上加下減”只用于函數(shù)15.關于中心對稱問題,只需使用中點坐標公式就可以,關于軸對稱問題,注意兩個等式的運用:一是垂直,二是中點在對稱軸上。
擴展閱讀:高中數(shù)學求參數(shù)取值范圍題型與方法總結歸納
參數(shù)取值問題的題型與方法
一、若在等式或不等式中出現(xiàn)兩個變量,其中一個變量的范圍已知,另一個變量的范圍為所求,且容易通過恒等變形將兩個變量分別置于等號或不等號的兩邊,則可將恒成立問題轉化成函數(shù)的最值問題求解。
5a4恒成立,求實數(shù)a的取值范圍。
解:原不等式即:4sinx+cos2x3
a204a20即5a4>a+2,上式等價于或,解得a
例4.(江蘇、天津)已知長方形四個頂點A(0,0),B(2,0),C(2,1)和D(0,1).一質點從AB的中點P沿與AB夾角為θ的方向射到BC上的點P1后,依次反射到CD、DA和AB上的點P2、P3和P4(入射角等于反射角).設P4的坐標為(x4,0).若1
kx2x22k化歸的方程有唯一解.據(jù)此設計出如下解題思路:關于x的方程
2k2120k1有唯一解。解:設點
20k1
M(x,2x)為雙曲線C上支上任一點,則點M到直線l的距離為:
即可轉化為如上關于x的方程.由于0kx2x22kk21,于是,問題
k1,所以
2x2xkx,從而有kx2x22kkx2x22k.
2x22(2(k21)2kkx)2,22于是關于x的方程kx2x2k2(k1)
22(k1)2kkx0k21x22k2(k21)2kx22(k1)2kkx0.2(k221)2k20,2由
0k1可知:方程
k21x22k2(k21)2kx2(k21)2k20的二根同正,故2(k21)2kkx0恒成立,于是
等價于
25.5k21x22k2(k21)2kx2(k21)2k20.由如上關于x的方程有唯一解,得其判別式20,就可解得k用導數(shù)求參數(shù)范圍
7.已知函數(shù)
f(x)ax1.ex11時,求f(x)的單調區(qū)間;(Ⅱ)若對任意t,2,f(t)t恒成立,求實數(shù)a的取值范圍.2x1x2解:(I)當a1時,f(x),由f(x)0得x2,f(x)0得x2f(x)的單調遞增區(qū)間f(x)xxeeax1>x恒成為(,2),單調遞減區(qū)間為(2,)(II)若對任意t1,2,使得f(t)t恒成立,則x1,2時,x,e221x1立,即x1,2時,ae恒成立,設g(x)ex1,x[,2],則g(x)ex1,x[1,2]設h(x)ex1,
x2x22x2x2,
111Qh(x)ex230在x[1,2]上恒成立,h(x)在x[,2]上單調遞增,即g(x)ex2在x[,2]上單調遞
2x22x1111112xx增,Qg()e240,Qg(2)e0g(x)e2在[,2]有零點m,g(x)e2在
24xx2,
(Ⅰ)當a11ag(),即ae2,ae21[,m]上單調遞減,在(m,2]上單調遞增,2122ae2ag(2)2f(x)axlnx,aR
2(Ⅰ)求函數(shù)f(x)的單調區(qū)間;(Ⅱ)是否存在實數(shù)a,使不等式f(x)ax對x(1,)恒成立。
1【解】(Ⅰ)f"(x)a,x0①當a0時,f"(x)0,函數(shù)f(x)在(0,)內是增函數(shù),即函數(shù)的單調增區(qū)間為
x,
11(0,),②當a0時,令f"(x)0,得x0,且x(0,)時,f"(x)0,又x(1,)時,f"(x)0,
aaa8.已知函數(shù)
11),遞減區(qū)間為(,).(Ⅱ)假設存在這樣的實數(shù)a,使不等式f(x)ax2對aa22x(1,)恒成立,即axaxlnx0(x1)恒成立.令h(x)axaxlnx(x1),則h(1)0,且h(x)0(x1)恒
所以函數(shù)
f(x)遞增區(qū)間為(0,12ax2ax11a成立h(x)2ax①當a0時,h(x)0,則函數(shù)h(x)在[1,)上單調遞減,于是
xxx
1h(x)h(1)0與h(x)0(x1)矛盾,故舍去.②當a0時,h(x)ax2axlnxax(x1)ln(x)而當x1x,12時,由函數(shù)yaxax和ylnx都單調遞減.且由圖象可知,x趨向正無窮大時,h(x)ax(x1)ln趨向于負無窮大.
x2ax2ax10等價于)0x(恒成立矛盾,故舍去.③當a0時,h(x)這與h(xx12a2xax1a28a0)記其兩根為x10x2(這是因為x1x2(00),易知x(x1,x2)時,h(x)0,而
2ax(x2,)時,h(x)0,(i)若x21時,則函數(shù)h(x)在(1,x2)上遞減,于是h(x)h(1)0矛盾,舍去;(ii)若x21時,aa28a則函數(shù)h(x)在(1,)上遞增,于是h(x)h(1)0恒成立.所以0x21,即x21(a0),解得a1,綜
4ay2上①②③可知,存在這樣的實數(shù)a1,使不等式f(x)ax對x(1,)恒成立y=lnx(x>1a2xaxlnx(aR).9.設函數(shù)f(x)2(Ⅰ)當a1時,求函數(shù)f(x)的極值;(Ⅱ)當a1時,討論函數(shù)f(x)的單調性.
(Ⅲ)若對任意a(2,3)及任意x1,x2[1,2],恒有maln2O1)xf(x1)f(x2)1x1".令f"(x)0,得x1.當解:(Ⅰ)函數(shù)的定義域為(0,).當a1時,f(x)xlnx,f(x)1xx10x1時,f"(x)0;當x1時,f"(x)0.f(x)極小值=f(1)1,無極大值.(Ⅱ)f"(x)(1a)xa
x2121(x1)(1a)(x)(x1)"(1a)xax1[(1a)x1](x1)1,0,f(x)在當即a2時,f(x)a1xxxx;a1111""1,x1.當(0,)上是減函數(shù);當即a2時,令f(x)0,得0x或x1;令f(x)0,得a1a1a11111,即1a2時,令f"(x)0,得0x1或x;令f"(x)0,得1x.綜上,當a2時,a1a1a111)和(1,)單調遞減,,1)上單調遞增;f(x)在定義域上是減函數(shù);當a2時,f(x)在(0,在(當1a2時,a1a111,)單調遞減,在(1,)上單調遞增(Ⅲ)由(Ⅱ)知,當a(2,3)時,f(x)在[1,2]上單f(x)在(0,1)和(a1a1f(x)有最大值,當x2時,f(x)有最小調遞減,當x1時,
a313a3ln2而a0經(jīng)整理得m值.f(x1)f(x2)f(1)f(2)ln2maln2由2222a221132a3得0,所以m0.
422a3227.已知函數(shù)f(x)axbxx(xR,a,b是常數(shù)),且當x1和x2時,函數(shù)f(x)取得極值(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線yf(x)與g(x)3xm(2x0)有兩個不同的交點,求實數(shù)m的取值范圍
3a2b10,2解:(Ⅰ)f(x)3ax2bx1,依題意f(1)f(2)0,即解得
12a4b10,1313a,b∴f(x)x3x2x(Ⅱ)由(Ⅰ)知,曲線yf(x)與g(x)3xm(2x0)有兩個不同
6464,
的交點,即1x33x22xm0在2,0上有兩個不同的實數(shù)解,設(x)1x33x22xm,則(x)1x23x2,
226464y=ax2-ax(a
(x)0,于是(x)在1,01m3上遞減.依題意有(2)0.∴實數(shù)m的取值范圍是013130m(1)0m1212(0)0m0m13.12f(x)x2alnx(a為實常數(shù)).
(1)若a2,求證:函數(shù)f(x)在(1,+.∞)上是增函數(shù);(2)求函數(shù)f(x)在[1,e]上的最小值及相應的x值;(3)若存在x[1,e],使得f(x)(a2)x成立,求實數(shù)a的取值范圍.
31.已知函數(shù)
2解:(1)當a2時,f(x)x22lnx,當x(1,),f(x)2(x1)0,故函數(shù)f(x)在(1,)上是增函數(shù).(2)
xf(x)222x2a(x0),當x[1,e],2xa[a2,a2e].若a2,f(x)在[1,e]上非負(僅當a2,x=1時,x,故函數(shù)f(x)0)
f(x)在[1,e]上是增函數(shù),此時[f(x)]minf(1)1。若2e2a2,當xa時,f(x)0;2當1xa時,f(x)0,此時f(x)是減函數(shù);當22aaaa)ln().若a2e,f2222axe時,f(x)0,此時f(x)是增函數(shù).故2[f(x)]minf((x)在[1,e]上非正(僅當a2e2,x=e時,f(x)0),故函數(shù)f(x)在[1,e]上是減函數(shù),此時[f(x)]minf(e)ae2.綜上可知,當a2時,f(x)的最小值為1,相應的x值為1;當
aaaa222e2a2時,f(x)的最小值為ln(),相應的x值為;當a2e時,f(x)的最小值為ae,
2222相應的x值為e.(3)不等式
f(x)(a2)x,可化為a(xlnx)x22x.∵x[1,e],∴l(xiāng)nx1x且等號不能同時
x22xx22x取,所以lnxx,即xlnx0,因而a(x[1,e]),令g(x)(x[1,e]),又
xlnxxlnxg(x)(x1)(x22lnx),當x[1,e]時,x10,lnx1,x22lnx0,從而g(x)0(僅當x=1時取等2(xlnx)號),所以g(x)在[1,e]上為增函數(shù),故g(x)的最小值為g(1)1,所以a的取值范圍是[1,).
導數(shù)的綜合應用
1*xNaln(x1),其中,a為常數(shù).n(1x)(Ⅰ)當n2時,求函數(shù)f(x)的極值;(Ⅱ)當a1時,證明:對任意的正整數(shù)n,當n≥2時,有f(x)≤x1.
1aln(x1),所以【解析】:(Ⅰ)解:由已知得函數(shù)f(x)的定義域為x|x1,當n2時,f(x)2(1x)例10、(山東卷)已知函數(shù)
f(x)f(x)2a(1x)2.(1)當a3(1x)0時,由f(x)0得x1121,x2121,此時f(x)a(xx1)(xx2).當
3aa(1x)x(1,x1)時,f(x)0,f(x)單調遞減;當x(x1,(2)當a≤0時,f(x)0)時,f(x)0,f(x)單調遞增.
a恒成立,所以
f(x)無極值.綜上所述,n2時,當a0時,f(x)在x12處取得極小值,極小值為f(x)無極值.(Ⅱ)證法一:因為a1,所以f(x)1ln(x1).n(1x)2a2.當a≤0時,f11lnaa2當n為偶數(shù)時,令g(x)x1以當x
n1x2n1,則g(x)1.所0(x≥2)ln(x1)n1n1n(x1)x1x1(x1)(1x)時,g(x)單調遞增,又g(2)0,2,
因此g(x)x1由于
1ln(x1)≥g(2)0恒成立,所以f(x)≤x1成立.當n為奇數(shù)時,要證f(x)≤x1,n(x1)1x21h(x)1≥0,所以只需證,令,則0h(x)x1ln(x1)ln(x1)≤x1nx1x1(1x)(x≥2),所以當x2,又h(2)10,所以當x≥2時,恒有h(x)0,時,h(x)x1ln(x1)單調遞增,
即ln(x1)正整數(shù)n,恒有
x1命題成立.綜上所述,結論成立.證法二:當a1時,f(x)1故只需證明1ln(x1)≤x1.令hx()x11(nl(≤1,n(1x)1ln(x1).當x≥2時,對任意的n(1x)1)x2xnl(1)x,x2,,
則h(x)11x1x2,當x≥2時,故h(x)在h(x)≥0,
x1因此當x≥2時,h(x)≥h(2)0,上單調遞增,2,即1ln(x1)≤x1成立.故當x≥2時,有
1ln(x1)≤x1.即f(x)≤x1.n(1x)x2y21的左、右焦點.(四川)設F1、F2分別是橢圓4(1)若P是該橢圓上的一個動點,求PFPF2的最大值和最小值.(2)設過定點M(0,2)的直線與橢圓交于不同的兩點A、B,1且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
122[解析](1)設P(x,y),F(xiàn)PF(3x,y)(3x,y)xy3(3x28),又x[2,2]∴1(3,0),F2(3,0)PF124x=0時,即點P為橢圓短軸端點時,PFPF2有最小值-2。x2時,即點P為橢圓長軸端點時,PF1PF2有最大值1.(2)1直線x=0不滿足條件,可設直線l:ykx2,A(x1,y1)、B(x2,y2),由ykx2x22y1414k(k2)x24kx30,x1x2,xx411223k214,
k43令(4k)24(k21)34k230,得k或k42即OAOBx1x2y1y20,又yy(kx2)(kx2)kxx2k(xx)4k1,∴
12121212223又0AOB90,故cos0,∴OAOB0.
2。
k214k21∴011k2k2443k2>4,即-2
【解】(1)2Snan12n11,2Sn1an22n21相減得:an23an12n1,
2S1a23a22a13,a33a246a113
*(2)a11,a25得an13an2n對nN均成立a1,a25,a3成等差數(shù)列a1a32(a25)a11,
an13an2nan12n13(an2n)得:an2n3(an12n1)32(an22n2)3n1(a12)an3n2n
(3)當n1時,
133n3211nnn當n2時,()()2322an21na12,22an2
111111113由上式得:對一切正整數(shù)n,有1113123n1na1a2an222222,a1a2an2
1.(浙江)已知公差不為0的等差數(shù)列{an}的首項a1a(aR),設數(shù)列的前n項和為Sn,且
,Bn1a1,
1a2,
1a4成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項公式及Sn(Ⅱ)記試比較
An1111...S1S2S3Sn1111...a1a2a22a2n,當n2時,
An與Bn的大小.[
a2a1a4【解】(Ⅰ)111a2aa(ad)2a(a3d)da1a,則an2141112a1(n1)da1(n1)a1na1na,
Sna1nn(n1)n(n1)n(n1)(Ⅱ)1111danaa1111An......222S1S2S3Sn122334n(n1)2a2a2a2a2121因為an212121(1)2a12a23a34an(n1)an111()n2(11)11111Bn...2a2na1a2a22a2n1a1122na,所以
當7.(廣東)設b0,數(shù)列
an滿足a1=b,annban1(n2),
an12n2bn1(1)求數(shù)列an的通項公式;(2)證明:對于一切正整數(shù)n,ann11
2【解析】(1)由a1b0,知annban1n1n12n1令
0,.An,A1,當
anban12n2anbban1n2n1n2n11222122212n2時,AnAn12n1n1A12n1n.
bbbbbbbbbb①當b12(1)nnbn(b2)2時,bn2n②當b2時,An.bb,b2(2)當bnnAnn,a2nb22b(b2)2,1b2bn2時,(欲證
nbn(b2)bn1bn1bn2n)]n1n1bn2nnannn11,只需證nb(n11)(2b)(2n1bn1)(bn12bn22n1)nb2b222b2
2n1bn12n2bn222nb2n2b2n12n1bn1
2222nbnbn1b2b(2nnn1)2nbn(222)2n2nbnn2n1bn,
bb2b22nn
nbn(b2)bn1bn1bn1annn11.當b2時,an2n11.綜上所述ann11.nb2222
012nn2時,22CnCnCnCnn1即1111nn12;當a0時,AnBn;當a0時,AnBn.
9.(重慶)設實數(shù)數(shù)列
an的前n項和Sn滿足Sn1an1SnnN*
3有0an1an(Ⅰ)若a1,S2,2a2成等比數(shù)列,求S2和a3(Ⅱ)求證:對k2解析:(Ⅰ)由題意S22a1a24。3,
S2a2S1a1a2,得S222S2,由S2是等比中項知S20,因此S22,由S2a3S3a3S2an1Sn,故Sn1,an11,且an1解得,a3S22Sn(Ⅱ)證明:有題設條件有an1S213Sna,Snn1Sn1an11要證ak0,
ak122Sk1ak1Sk2ak11①因a2a1a130,從而對k3有且ak1akk1k1k124Sk11ak1Sk21aak1k1ak11ak14,32a4,即證3a24a2a1,即a220,此式明顯成立,因此4k1由①,只要證ak1k1k1k1k3。k23ak1ak113222aakka10。矛盾,最后證,ak1ak,若不然,a,又因,故,即a01akkkk122akak1akak12an4.已知數(shù)列an中,a1aa2,對一切nN,an0,an1。
2an1*(I)求證:an(II)證明:a1a2an2na2。2且an1an;
22n2an12aan1解:證明:(1)∵a,∴,∴a1an220,∴an2,若存在ak2,n0n12an112an112an1則ak12,由此可推出ak22,,a12,此與a1a2矛盾,故an2!遖n1anan2an0,∴
2an1an12an22a12n2,2n12222an112111112n2a2112a2,∴a2a2a2a21a212nn12n124212a2an12an12,∴
(2)由(1)得a2n1an1an。an2n∴
a1a2an2na2。
yfx的定義域為R,且對于任意x1,x2R,存在正實數(shù)L,使得fx1fx2Lx1x2,求L的取值范圍;(2)當0都成立.
8.已知函數(shù)(1)若
fx1x2nL1時,數(shù)列an滿足an1fan,n1,2,.
①證明:
akak1k11a1a21L;
②na1a2ak1令Aka1a2k1,2,3,,證明:AkAk1k1Lk1.
解答:(1)證明:對任意x1,x2R,有:fxfx1x21x212122x12x222x1x2x1x21x1x2122
1x1x21由
fx1fx2Lx1x2,即x1x2x1x21x1x2122Lx1x2,
∴.當x1x2時,得Lx1x21x1x2122.
221x1x1,1x2x2,x1x2x1x2且
x1x21x1x2122x1x2x1x21!嘁
fx1fx2Lx1x2對任意x1,x2R都成立,只要L1,當x1x2時,fx1fx2Lx1x2恒成立.
∴L的取值范圍是
1,。(2)證明:①∵
1nan1fan,
n1,2,,故當
n2時,。
anan1∴
fn1afnaLaLnfaan2fan1L2an2an1Ln1a1a21Ln1LLLa1a2a1a2
1L2n1ak1nkak1a1a2a2a3a3a4anan1∵
0L1,∴
akak1k1n1a1a2(1L當
n1時,不等式也成立)。②∵
Aka1a2akk,∴
AkAk11a1a2aka1a2ak1a1a2akkak1kk1kk11a1a22a2a33a3a4kakak1kk11a1a22a2a33a3a4kakak1.∴AkAk1A1A2A2A3AnAn1kk1k1n111111a1a22aa2312232334nn1nn111113a3a4naann13445nn1nn112na1a21aa1aa123nn1
n1n1n1a1a2a2a3anan115.設數(shù)列
1a1a21L.
bn2nN是等比數(shù)列。
16.(I)求數(shù)列
an,bn滿足a1b16,a2b24,a3b33,且數(shù)列an1annN是等差數(shù)列,數(shù)列
1(II)是否存在kN,使akbk0,,若存在,求出k。an和bn的通項公式;
2解(1)由已知a2a12,a3a21公差d121an1an(a2a1)(n1)1n3
ana1(a2a1)(a3a1)(anan1)6(2)(1)0(n4)
6(2)(n4)(n1)2=
nn1n11n27n18111由已知b124,b222,所以公比qb2b24bn28n1222
2kk174911712(2)設f(k)akbk,所以當k4時,f(k)是
kk928k8724222221所以不存在k,使f(k)0,。f(1)f(2)f(3)0,
222Sn116.數(shù)列{an}的首項a11,前n項和Sn與an之間滿足an(2)設(n2).(1)求證:數(shù)列{}的通項公式;
Sn2Sn1增函數(shù)。又f(4)11,所以當k2時f(k)22,又存在正數(shù)k,使(1S1)(1S2)(1Sn)k2n1對一切nN*都成立,求k的最大值.
22Sn2解:(1)證明:∵n2時,anSnSn1,∴SnSn1,∴(SnSn1)(2Sn1)2Sn,∴
2Sn11111(2)由(1)2(n2),數(shù)列{}是以1為首項,以2為公差的等差數(shù)列。Sn1Sn2SnSn1,∴
SnSn1SnS1111,∴Sn1.設F(n)(1S1)(1S2)(1Sn),則知1(n1)22n1,∴Sn2n12n1Sn2n1F(n1)(1Sn1)2n12n24n28n41.∴F(n)在nN*上遞增,要使F(n)k恒成2F(n)4n8n32n3(2n1)(2n3)立,只需[F(n)]mink∵[F(n)]minF(1)2223∴0k3,kmax3.333n11118.已知數(shù)列an滿足a1,anan1,nN224b1.(1)求數(shù)列
(2)設an的通項公式;
a>0,數(shù)列
bn滿足
bn1,若bnan對nN成立,試求a的取值范圍。,bn1aa1abnaan1an2anan111an2124,,na411n24n1解:(1)
又a111111,a1a2,a2,an是公比為
22244的等比數(shù)列,
n0
1111111a1a22a33a4...(n1)an1()()...[]21!2!2!3!(n1)!n!n!1241從而有2,n!12111,即n!121,5!120,6!720n!121n5取N5,nN時,原不等式成立...............9分(3)將
1(1)nn展開,
1111111nn1n2nr111,
(1)n1a1a2anTr1Crn()rn0!1!2!3!n!nnnnnr!r!
24.在數(shù)列{an}中,a11,2an1nn1(nN*)an23時,an3n1.n12an1nan2n12n1n2nan0,n1,an22nan2n1(Ⅰ)試比較anan2與an1的大。唬á颍┳C明:當n解:(Ⅰ)由題設知,對任意
nN*,都有,
n12n11nanan222nn12n1222(1)aaanan2a()an1(1)an1n10n1nnnn12(n2)2(n2)an1an1n22392anan2ana1,a,a.an1nn11,an1an,又(Ⅱ)證法1:由已知得,123124an2n1n1n1n1a11,an1(n2).當n3時,an(n11)an1n1an1an1n1an1anan1n1
22222n1ana3(a4a3)(a5a4)(anan1)934n134n14222設
S34n123242n11113111n13162nn1134n1①則S45②,①-②,得S4(45n1)n
2222n222222n81122311n1n19n1n1n1Sn2n11n1.an1n121n13n1證法2:由已知得,
44222422239n19n3a11,a2,a.32(1)當時,由,知不等式成立。(2)假設當nk(k3)不等式成立,即3n12424k1kkk1k(k1)k2ak3k1,那么ak1(k1)ak(k1)(3k1)32k1k1222222
(k1)1k(k1)k2k2kk(k1)k要證ak13,只需證即證,則只需證2k1(k1)12k1k1kk12k1222222(k1)1k01k01因為2CkCkCkCkCkk1成立,所以ak13成立。這就是說,當nk1時,不等式仍
2(k1)1n1然成立.根據(jù)(1)和(2),對任意nN*,且n3,都有an3n1
2友情提示:本文中關于《高中數(shù)學思想方法題型總結》給出的范例僅供您參考拓展思維使用,高中數(shù)學思想方法題型總結:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。