Ǻ(sh)}͚w{(4)
Ǻ(sh)}͚w{4
һx}
1.֪sintcos(2a)A.1155B.C.D.9393231ֵ2cossin21052A.B.C.D.23332.3sincos0,t3.A
(,)2
sin24sin()cos()425ô
2222225B5C5D5
4.֪(sh)f(x)sin(x)(xR,0)Сڞ˵õ
4(sh)g(x)cosxĈDֻҪyf(x)ĈD
88C.ƽƂ(g)λL(zhng)D.ƽƂ(g)λL(zhng)
44cos2x5.(dng)0xr(sh),(sh)f(x)Сֵǣ
4cosxsinxsin2xA.ƽƂ(g)λL(zhng)B.ƽƂ(g)λL(zhng)
A4BC2D6.cos2sin()2212144tsincosֵ飨
ABCD22121222
7.O(sh)ABC(g)(ni)A,B,Cm(3sAinB,sin)n(cosB,3cosA)mn1cos(AB)tC=
ABC
6323D
568.}Ǽ}ǣABCD
ż(sh)
18fp
9.ǡABCһ(g)(ni)sincostsincosֵA3355BCD222210.sintcos2
3314ABCD
}
7814147811.֪c(din)P(sinֵ.
33,cos)ڽǵĽK߅0,2,ttan()44312.֪sin(x)tsin(6145x)sin2(x)=63sin2500_______.13.01sin10
14.֪sin()tcos
22}15.֪sinacosa353,a(0,4),sin(),(,)54542(1)sin2atan2aֵ(2)cos(2)ֵ.
16.֪f(x)=
12
xxxx17.֪a(sin,3cos),b(cos,cos)O(sh)f(x)ab.
2222,Ү(dng)
ֵ
ֵ
r(sh)ֵ
(sh)f(x)[0,2]ϵc(din)
CČ(du)߅քeabc֪O(sh)ABCă(ni)ABf(A)3,b2,sinA2sinC߅cֵ
18.15
֪(sh)f(x)tan(2x),
4f(x)ĶxcС
IIO(sh)f()2cos2,Ĵ0,
U(ku)չxǺ(sh)}͚w{(2)
Ǻ(sh)}͚w{2
1.3tan=3t
sin2ֵ2cosaA2B3C4
D6
12.|7O(sh)sin+=tsin2
43711ABC
999D
793.ȫ(gu)n(bio)5֪ǵc(din)cԭc(din)غʼ߅cxSSغ
K߅ֱy2xtcos2=
4334ABCD
55554sin15cos15=________
sin2sin5=__________
cos2cos16sincos2((,)).ttan=_______
217֪sincos(0,)tsin2ֵ______
58֪(sh)f(x)=__________________9.K7֪tan(x10.
1xx(,)tf(cosx)+f(-cosx)ɻ
21x4)2,t
tanxֵ_(ki)_________tan2x֪a(sin,2)cb(1,cos)ഹֱ(0,)
21sincosֵ
25cos()35cos0
,cosֵ11.
.
ǣO(sh)
e.
12(sh)y=sin2x+2sinxcosx+3cos2xСֵʹyȡСֵr(sh)xļϣ13.֪2x7,sinxcosx,ֵ45sinxcosx
3sin2xxxxcos24sincos2222.
tan(x)
14.֪a(sin,2)cb(1,cos)ഹֱ(0,)
21sincosֵ
25cos()35cos0
,cosֵ15֪a(sin,2)cb(1,cos)ഹֱ(0,)
21sincosֵ2sin()10,0cosֵ102
16ڡABCABC(du)߅քeabcҝMcsinAacosC.
(1)CĴ
(2)3sinAcosB4ֵȡֵr(sh)ABĴС
17.15
֪(sh)f(x)4cosxsin(x)1
6f(x)Сڣ
f(x)څ^(q)g,ϵֵСֵ64
18.16
1O(sh)ABCă(ni)A,B,C(du)߅քea,b,c֪a1.b2.cosC.
4ABCL(zhng)cosACֵ
ʾP(gun)ڡǺ(sh)}͚w{(4)oķHչ˼SʹãǺ(sh)}͚w{(4)ԓƪ½h(chung)
(li)ԴW(wng)j(lu) ؟(z)ăHތW(xu)(x)a(chn)(qun)(wn)}Ո(qng)(lin)ϵ҂r(sh)h