201*重慶高考文科數(shù)學(xué)數(shù)列題型總結(jié)
1.已知等比數(shù)列an中,a12,a416。(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)等差數(shù)列bn中,b2a2,b9a5,求數(shù)列bn的前n項(xiàng)和Sn2.已知等差數(shù)列an,a35,a2a716(1)求數(shù)列an的通項(xiàng)公式(2)設(shè)bn2,求數(shù)列bn的前n項(xiàng)和anan1n1an1(nN)23.已知數(shù)列{an}中,a11,a12a23a3nan(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{n2an}的前n項(xiàng)和Tn
4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a65,S462.
(1)求{an}通項(xiàng)公式;(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.
5.(本小題滿分12分)已知數(shù)列an的前n項(xiàng)和Snn22n,(nN*)。(1)求通項(xiàng)an;
(2)若bn2n(an12),(nN*),求數(shù)列bn的最小項(xiàng)6設(shè)an是公比為正數(shù)的等比數(shù)列,a12,a3a24。(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{anbn}的
前n項(xiàng)和sn。
7w已知{an}是首項(xiàng)為19,公差為-2的等差數(shù)列,Sn為{an}的前n項(xiàng)和。(Ⅰ)求通向an及Sn;(Ⅱ)設(shè){bnan}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通向公式及其前n項(xiàng)和Tn
8.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)求數(shù)列{2an}的前n項(xiàng)和Sn.9.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且
a1a22(11111),a3a4a564()a1a2a3a4a5(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn(an12),求數(shù)列{bn}的前n項(xiàng)和Tn。an10.設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0。
(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范圍。
11已知等差數(shù)列an滿足:a37,a5a726.an的前n項(xiàng)和為Sn.(Ⅰ)求an及Sn;(Ⅱ)令bn1(nN),求數(shù)列bn的前2an1n項(xiàng)和Tn.
12.已知|an|為等差數(shù)列,且a36,a60。(Ⅰ)求|an|的通項(xiàng)公式;
(Ⅱ)若等差數(shù)列|bn|滿足b18,b2a1a2a3,求|bn|的前n項(xiàng)和公式
13.已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4。(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;w_ww.k#s5_u.co*m(Ⅱ)設(shè)bn(4an)qn1(q0,nN*),求數(shù)列{bn}的前n項(xiàng)和Sn
擴(kuò)展閱讀:201*年全國(guó)各地高考文科數(shù)學(xué)試題分類匯編5:數(shù)列
201*年全國(guó)各地高考文科數(shù)學(xué)試題分類匯編5:數(shù)列
一、選擇題
1.(201*年高考大綱卷(文))已知數(shù)列
43aa0,a,則an的前10項(xiàng)和等于滿足ann1n23()
-10A.-61-3
B.
11-3-109-10C.31-3
-10D.31+3
【答案】C
2.(201*年高考安徽(文))設(shè)Sn為等差數(shù)列
an的前n項(xiàng)和,S84a3,a72,則a9=
C.2
D.2
()
A.6
【答案】A
B.4
3.(201*年高考課標(biāo)Ⅰ卷(文))設(shè)首項(xiàng)為1,公比為
2的等比數(shù)列{an}的前n項(xiàng)和為Sn,則()3D.Sn32an
A.Sn2an1
【答案】D
B.Sn3an2C.Sn43an
4.(201*年高考遼寧卷(文))下面是關(guān)于公差d0的等差數(shù)列
an的四個(gè)命題:
p2:數(shù)列nan是遞增數(shù)列;p1:數(shù)列an是遞增數(shù)列;ap4:數(shù)列an3nd是遞增數(shù)列;p3:數(shù)列n是遞增數(shù)列;n其中的真命題為A.p1,p2
【答案】D二、填空題
5.(201*年高考重慶卷(文))若2、a、b、c、9成等差數(shù)列,則ca____________.
【答案】
()
B.p3,p4
C.p2,p3
D.p1,p4
726.(201*年高考北京卷(文))若等比數(shù)列
an滿足a2a420,a3a540,則公比q=__________;前n項(xiàng)
Sn=_____.
【答案】2,2n12
7.(201*年高考廣東卷(文))設(shè)數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列,則a1|a2【答案】15
|a3|a4|________
8.(201*年高考江西卷(文))某住宅小區(qū)計(jì)劃植樹不少于100棵,若第一天植2棵,以后每天植樹的棵樹是
前一天的2倍,則需要的最少天數(shù)n(n∈N*)等于_____________.
【答案】6
9.(201*年高考遼寧卷(文))已知等比數(shù)列
an是遞增數(shù)列,Sn是an的前n項(xiàng)和,若a1,a3是方程x25x40的兩個(gè)根,則S6____________.
【答案】63
10.(201*年高考陜西卷(文))觀察下列等式:
(11)21(21)(22)2213(31)(32)(33)23135
照此規(guī)律,第n個(gè)等式可為________.
【答案】(n1)(n2)(n3)(nn)211.(201*年上海高考數(shù)學(xué)試題(文科))在等差數(shù)列
【答案】15三、解答題
12.(201*年高考福建卷(文))已知等差數(shù)列{an}的公差dn135(2n1)
an中,若a1a2a3a430,則a2a3_________.
1,前n項(xiàng)和為Sn.
(1)若1,a1,a3成等比數(shù)列,求a1;(2)若S5a1a9,求a1的取值范圍.
【答案】解:(1)因?yàn)閿?shù)列{an}的公差d1,且1,a1,a3成等比數(shù)列,所以a121(a12),
即a12a120,解得a11或a12.
(2)因?yàn)閿?shù)列{an}的公差d1,且S5a1a9,所以5a110a128a1;即a123a1100,解得5a12
13.(201*年高考大綱卷(文))等差數(shù)列
an中,a74,a192a9,
(I)求an的通項(xiàng)公式;(II)設(shè)bn1,求數(shù)列bn的前n項(xiàng)和Sn.nan【答案】(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,則ana1(n1)d
a16d4a741因?yàn)?所以.解得,a11,d.
2a192a9a118d2(a18d)所以{an}的通項(xiàng)公式為an(Ⅱ)bnn1.22222222n1222),所以Sn()()(.
1223nn1n1nann(n1)nn114.(201*年高考湖北卷(文))已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2a3a418.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)n,使得Sn201*?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
【答案】(Ⅰ)設(shè)數(shù)列{an}的公比為q,則a10,q0.由題意得
232S2S4S3S2,a1qa1qa1q,即2aaa18,aq(1qq)18,3421a3,解得1故數(shù)列{an}的通項(xiàng)公式為an3(2)n1.
q2.3[1(2)n]1(2)n.(Ⅱ)由(Ⅰ)有Sn1(2)若存在n,使得Sn201*,則1(2)n201*,即(2)n201*.當(dāng)n為偶數(shù)時(shí),(2)n0,上式不成立;
當(dāng)n為奇數(shù)時(shí),(2)n2n201*,即2n201*,則n11.
綜上,存在符合條件的正整數(shù)n,且所有這樣的n的集合為{nn2k1,kN,k5}.
15.(201*年高考湖南(文))設(shè)Sn為數(shù)列{an}的前項(xiàng)和,已知a10,2ana1S1Sn,nN
(Ⅰ)求a1,a2,并求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和.
【答案】解:(Ⅰ)S1a1.當(dāng)n1時(shí),2a1a1S1S1a10,a11.
2ana12an1a12an2an1an2an1-S1S1當(dāng)n1時(shí),ansnsn1{an}時(shí)首項(xiàng)為a11公比為q2的等比數(shù)列,an2n1,nN*.
(Ⅱ)設(shè)Tn1a12a23a3nanqTn1qa12qa23qa3nqan
qTn1a22a33a4nan1
上式左右錯(cuò)位相減:
(1q)Tna1a2a3annan1Tn(n1)2n1,nN*.
1qna1nan12n1n2n
1q16.(201*年高考重慶卷(文))(本小題滿分13分,(Ⅰ)小問7分,(Ⅱ)小問6分)
設(shè)數(shù)列an滿足:a11,an13an,nN.(Ⅰ)求an的通項(xiàng)公式及前n項(xiàng)和Sn;zhangwlx(Ⅱ)已知bn是等差數(shù)列,Tn為前n項(xiàng)和,且b1a2,b3a1a2a3,求T20.
【答案】
17.(201*年高考天津卷(文))已知首項(xiàng)為
3的等比數(shù)列{an}的前n項(xiàng)和為Sn(nN*),且2S2,S3,4S4成等2差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)證明Sn【答案】
113(nN*).Sn6
18.(201*年高考北京卷(文))本小題共13分)給定數(shù)列a1,a2,,an.對(duì)i1,2,,n1,該數(shù)列前i項(xiàng)的
最大值記為Ai,后ni項(xiàng)ai1,ai2,,an的最小值記為Bi,diAiBi.[來(lái)源:學(xué)科網(wǎng)ZXXK](Ⅰ)設(shè)數(shù)列an為3,4,7,1,寫出d1,d2,d3的值;
(Ⅱ)設(shè)a1,a2,,an(n4)是公比大于1的等比數(shù)列,且a10.證明:d1,d2,,dn1是等比數(shù)列;
(Ⅲ)設(shè)d1,d2,,dn1是公差大于0的等差數(shù)列,且d10,證明:a1,a2,,an1是等差數(shù)列
【答案】解:(I)d12,d23,d36.
(II)因?yàn)閍10,公比q1,所以a1,a2,,an是遞增數(shù)列.因此,對(duì)i1,2,,n1,Aiai,Biai1.
于是對(duì)i1,2,,n1,diAiBiaiai1a1(1q)qi1.因此di0且
di1q(i1,2,,n2),即d1,d2,,dn1是等比數(shù)列.di(III)設(shè)d為d1,d2,,dn1的公差.
對(duì)1in2,因?yàn)锽iBi1,d0,所以Ai1Bi1di1BididBidi=Ai.又因?yàn)锳i1maxAi,ai1,所以ai1Ai1Aiai.
從而a1,a2,,an1是遞增數(shù)列,因此Aiai(i1,2,,n2).又因?yàn)锽1A1d1a1d1a1,所以B1a1a2an1.因此anB1.所以B1B2Bn1an.所以aiAi=Bidiandi.
因此對(duì)i1,2,,n2都有ai1aidi1did,即a1,a2,,an1是等差數(shù)列.
19.(201*年高考山東卷(文))設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,且S44S2,a2n2an1
(Ⅰ)求數(shù)列an的通項(xiàng)公式(Ⅱ)設(shè)數(shù)列bn滿足
【答案】
bb1b21n1n,nN*,求bn的前n項(xiàng)和Tna1a2an
20.(201*年高考浙江卷(文))在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(Ⅰ)求d,an;(Ⅱ)若dan0|a1||a2||a3||an|a1a2a3an②當(dāng)12n(1011n)n(21n)22n時(shí),
an0|a1||a2||a3||an|a1a2a3a11(a12a13an)11(2111)n(21n)n221n2202(a1a2a3a11)(a1a2a3an)2222
n(21n),(1n11)2所以,綜上所述:|a1||a2||a3|;|an|2n21n220,(n12)221.(201*年高考四川卷(文))在等比數(shù)列{an}中,a2a12,且2a2為3a1和a3的等差中項(xiàng),求數(shù)列{an}的
首項(xiàng)、公比及前n項(xiàng)和.
【答案】解:設(shè)
an的公比為q.由已知可得
a1qa12,4a1q3a1a1q2,
所以a1(q1)2,q24q30,解得q3或q1,
由于a1(q1)2.因此q1不合題意,應(yīng)舍去,故公比q3,首項(xiàng)a11.
3n1所以,數(shù)列的前n項(xiàng)和Sn
222.(201*年高考廣東卷(文))設(shè)各項(xiàng)均為正數(shù)的數(shù)列
an的前n項(xiàng)和為Sn,滿足4Snan214n1,nN,且a2,a5,a14構(gòu)成等比數(shù)列.(1)證明:a24a15;(2)求數(shù)列an的通項(xiàng)公式;(3)證明:對(duì)一切正整數(shù)n,有
1111.a1a2a2a3anan12【答案】(1)當(dāng)n1時(shí),4a1222a25,a24a15,an0a24a15(2)當(dāng)n2時(shí),4Sn1an4n11,4an4Sn4Sn1an1an4
2222an1an4an4an2,an0an1an2
2當(dāng)n2時(shí),an是公差d2的等差數(shù)列.2a2,a5,a14構(gòu)成等比數(shù)列,a5a2a14,a28a2a224,解得a23,
22由(1)可知,4a1a25=4,a11
a2a1312an是首項(xiàng)a11,公差d2的等差數(shù)列.
數(shù)列an的通項(xiàng)公式為an2n1.
(3)
1111111a1a2a2a3anan11335572n12n11111111112335572n12n11111.22n1223.(201*年高考安徽(文))設(shè)數(shù)列
an滿足a12,a2a48,且對(duì)任意nN*,函數(shù)
f(x)(anan1an2)xan1cosx-an2sinx滿足f"()0
2(Ⅰ)求數(shù)列an的通項(xiàng)公式;(Ⅱ)若bn(2an【答案】解:由a11,求數(shù)列bn的前n項(xiàng)和Sn.)an22a2a48
x)f(x)(anan1an2)xan1cosx-an2sinxf(an-an1an2-an1sinx-an2cosx
f"()an-an1an2-an10所以,2an1anan2an是等差數(shù)列.
2而a12a34d1an2(n-1)1n1(2)bn(2an111)(2n1)(2n1)2an2n12n11(1-n)(22n1)n22Sn
12111-=(nn3)1-nn23n1-n22224.(201*年高考課標(biāo)Ⅱ卷(文))已知等差數(shù)列
an的公差不為零,a=25,且a,a
1111,a13成等比數(shù)列.
(Ⅰ)求an的通項(xiàng)公式;(Ⅱ)求a1a4a7a3n2.
【答案】
25.(201*年高考江西卷(文))正項(xiàng)數(shù)列{an}滿足an2(2n1)an2n0.
(1)求數(shù)列{an}的通項(xiàng)公式an;(2)令bn1,求數(shù)列{bn}的前n項(xiàng)和Tn.
(n1)an2【答案】解:(1)由an(2n1)an2n0得(an-2n)(an+1)=0
由于{an}是正項(xiàng)數(shù)列,則an2n.(2)由(1)知an2n,故bn11111()
(n1)an(n1)(2n)2n(n1)Tn11111111n(1...)(1)2223nn12n12n226.(201*年高考陜西卷(文))
設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若{an}為等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
1qn(Ⅱ)若a11,q0,且對(duì)所有正整數(shù)n,有Sn.判斷{an}是否為等比數(shù)列.
1q【答案】解:(Ⅰ)設(shè)公差為d,則ana1(n1)d
Sna1a2an1an2Sn(a1an)(a2an1)(an1a1)(ana1)Saaaann121n2Snn(a1an)Snn(a1an)n1n(a1d).22,q0,由題知q1.(Ⅱ)a1qn1qn11qnqnqn1nN,Snan1Sn1Snqn
1q1q1q1q*1ann1qn1n2anqn1,nN*.
所以,數(shù)列{an}是首項(xiàng)a11,公比q1的等比數(shù)列.
27.(201*年上海高考數(shù)學(xué)試題(文科))本題共有3個(gè)小題.第1小題滿分3分,第2小題滿分5分,第3小題
滿分8分.已知函數(shù)f(x)2|x|.無(wú)窮數(shù)列{an}滿足an1f(an),nN*.(1)若a10,求a2,a3,a4;
(2)若a10,且a1,a2,a3成等比數(shù)列,求a1的值;
(3)是否存在a1,使得a1,a2,a3,,an成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.
【答案】
28.(201*年高考課標(biāo)Ⅰ卷(文))已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S30,S55.
(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)求數(shù)列{1}的前n項(xiàng)和.
a2n1a2n【答案】(1)設(shè){an}的公差為d,則Sn=na1n(n1)d.23a13d0,解得a11,d1.由已知可得5a110d5,
故an的通項(xiàng)公式為an=2-n.
(2)由(I)知
11111(),
a2n1a2n1(32n)(12n)22n32n1從而數(shù)列
1111111n1(-+-++).的前n項(xiàng)和為2-11132n32n112na2n1a2n
友情提示:本文中關(guān)于《201*重慶高考文科數(shù)學(xué)數(shù)列題型總結(jié)》給出的范例僅供您參考拓展思維使用,201*重慶高考文科數(shù)學(xué)數(shù)列題型總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。