欧洲免费无码视频在线,亚洲日韩av中文字幕高清一区二区,亚洲人成人77777网站,韩国特黄毛片一级毛片免费,精品国产欧美,成人午夜精选视频在线观看免费,五月情天丁香宗合成人网

薈聚奇文、博采眾長(zhǎng)、見(jiàn)賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 高一數(shù)學(xué)必修2公式定理總結(jié)

高一數(shù)學(xué)必修2公式定理總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-26 20:29:37 | 移動(dòng)端:高一數(shù)學(xué)必修2公式定理總結(jié)

高一數(shù)學(xué)必修2公式定理總結(jié)

必修2空間幾何部分公式定理總結(jié)

河南省淮陽(yáng)一高高一B段數(shù)學(xué)組張明選棱柱、棱錐、棱臺(tái)的表面積

設(shè)圓柱的底面半徑為,母線長(zhǎng)為,則它的表面積等于圓柱的側(cè)面積(矩形)加上底面積(兩個(gè)圓),即

.

設(shè)圓錐的底面半徑為,母線長(zhǎng)為,則它的表面積等于圓錐的側(cè)面積(扇形)加上底面積(圓形),即

.

設(shè)圓臺(tái)的上、下底面半徑分別為

,,母線長(zhǎng)為,則它的表面積等上、下底面的面

積(大、小圓)加上側(cè)面的面積(扇環(huán)),即

.

柱、錐、臺(tái)的體積公式

柱體體積公式為:

,(為底面積,為高)

錐體體積公式為:,(為底面積,為高)

臺(tái)體體積公式為:(

球的體積和表面積

球的體積公式

,分別為上、下底面面積,為高)

球的表面積公式

其中,

為球的半徑.顯然,球的體積和表面積的大小只與半徑

有關(guān).

公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).公理2過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.推論1經(jīng)過(guò)一條直線和直線外一點(diǎn)有且只有一個(gè)平面.推論2經(jīng)過(guò)兩條相交的直線有且只有一個(gè)平面.推論3經(jīng)過(guò)兩條平行的直線有且只有一個(gè)平面.

公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

公理4(平行公理)平行于同一條直線的兩條直線互相平行.

定理空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線.

空間兩條直線的位置關(guān)系有且只有三種:

共面直線:相交直線(在同一平面內(nèi),有且只有一個(gè)公共點(diǎn));平行直線(在同一平面內(nèi),沒(méi)有公共點(diǎn));異面直線:不同在任何一個(gè)平面內(nèi)且沒(méi)有公共點(diǎn).

空間中直線與平面位置關(guān)系有且只有三種:直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn)

直線與平面相交有且只有一個(gè)公共點(diǎn)直線與平面平行沒(méi)有公共點(diǎn)

直線與平面相交或平行的情況統(tǒng)稱為直線在平面外.

兩個(gè)平面的位置關(guān)系只有兩種:兩個(gè)平面平行沒(méi)有公共點(diǎn)兩個(gè)平面相交有一條公共直線異面直線所成的角

已知兩條異面直線

,經(jīng)過(guò)空間任一點(diǎn)

作直線

∥,

∥,把

所成的

銳角(或直角)叫做異面直線兩條直線互相垂直,記作

所成的角(夾角).如果兩條異面直線所成的角是直角,就說(shuō)這.

異面直線的判定定理

過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線,和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線.

直線與平面平行的判定定理

平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行.直線與平面平行的性質(zhì)定理

一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線都與該直線平行.兩個(gè)平面平行的判定定理

一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行.

推論:一個(gè)平面內(nèi)兩條相交的直線分別平行于另一個(gè)平面內(nèi)的兩條直線,則這兩個(gè)平面平行.

兩個(gè)平面平行的性質(zhì)定理

如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行.兩個(gè)平面平行,還有如下推論:

⑴如果兩個(gè)平面平行,則一個(gè)平面內(nèi)的任何直線都平行于另外一個(gè)平面;⑵夾在兩個(gè)平行平面內(nèi)的所有平行線段的長(zhǎng)度都相等;

⑶如果一條直線垂直于兩個(gè)平行平面中的一個(gè),那么這條直線也垂直于另一個(gè)平面.⑷如果一條直線和兩個(gè)平行平面中的一個(gè)相交,那么它和另一個(gè)也相交.直線和平面垂直的概念

如果直線與平面.叫做垂線,

內(nèi)的任意一條直線都垂直,就說(shuō)直線與平面叫垂面,它們的交點(diǎn)

叫垂足.

互相垂直,記做

直線和平面垂直的判定定理

一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直.直線與平面所成的角

如圖,直線斜足;

,

和平面

相交但不垂直,

在平面

叫做平面的斜線,

和平面的交點(diǎn)

叫做斜線上的射影.平面的一條斜線和它在平面上的射影

所成的銳角,叫這條直線和平面所成的角.

直線垂直于平面,則它們所成的角是直角;直線和平面平行或在平面內(nèi),則它們所成的角是°角.

兩個(gè)平面垂直的判定定理

一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫二面角的棱,這兩個(gè)半平面叫二面角的面.

在二面角于棱的射線

的棱上任取一點(diǎn),則射線

,以點(diǎn)

為垂足,在半平面

內(nèi)分別作垂直

構(gòu)成的

叫做二面角的平面角.平面角是直角的二面角叫直二面角.

判斷兩平面垂直的方法:判定定理;求出二面角的平面角為直角.三垂線定理:

平面內(nèi)的一條直線,如果和平面的一條斜線的射影垂直,那么它也和這條斜線垂直.如圖:在平面

內(nèi)的直線若垂直于直線

,則就一定垂直于平面

的斜線

.

直線與平面垂直的性質(zhì)定理

垂直于同一個(gè)平面的兩條直線平行.平面與平面垂直的性質(zhì)定理

兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.兩個(gè)平面垂直的性質(zhì)還有:

⑴如果兩個(gè)平面互相垂直,那么經(jīng)過(guò)一個(gè)平面內(nèi)一點(diǎn)且垂直于另外一個(gè)平面的直線,必在這個(gè)平面內(nèi);

⑵如果兩個(gè)相交平面都垂直于另一個(gè)平面,那么這兩個(gè)平面的交線垂直于這個(gè)平面;⑶三個(gè)兩兩垂直的平面,它們的交線也兩兩垂直.

空間平行和垂直關(guān)系的轉(zhuǎn)化

三角函數(shù)公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

判別式

b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

b2-4ac

擴(kuò)展閱讀:高一數(shù)學(xué)必修2空間幾何部分公式定理總結(jié)

必修2空間幾何部分公式定理總結(jié)

河南省淮陽(yáng)一高高一B段數(shù)學(xué)組張明選棱柱、棱錐、棱臺(tái)的表面積

設(shè)圓柱的底面半徑為,母線長(zhǎng)為,則它的表面積等于圓柱的側(cè)面積(矩形)加上底面積(兩個(gè)圓),即

.

設(shè)圓錐的底面半徑為,母線長(zhǎng)為,則它的表面積等于圓錐的側(cè)面積(扇形)加上底面積(圓形),即

.

設(shè)圓臺(tái)的上、下底面半徑分別為

,,母線長(zhǎng)為,則它的表面積等上、下底面的面

積(大、小圓)加上側(cè)面的面積(扇環(huán)),即

.

柱、錐、臺(tái)的體積公式

柱體體積公式為:

,(為底面積,為高)

錐體體積公式為:,(為底面積,為高)

臺(tái)體體積公式為:(

球的體積和表面積

球的體積公式

,分別為上、下底面面積,為高)

球的表面積公式

其中,

為球的半徑.顯然,球的體積和表面積的大小只與半徑

有關(guān).

公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).公理2過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.推論1經(jīng)過(guò)一條直線和直線外一點(diǎn)有且只有一個(gè)平面.推論2經(jīng)過(guò)兩條相交的直線有且只有一個(gè)平面.推論3經(jīng)過(guò)兩條平行的直線有且只有一個(gè)平面.

公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

公理4(平行公理)平行于同一條直線的兩條直線互相平行.

定理空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線.

空間兩條直線的位置關(guān)系有且只有三種:

共面直線:相交直線(在同一平面內(nèi),有且只有一個(gè)公共點(diǎn));平行直線(在同一平面內(nèi),沒(méi)有公共點(diǎn));異面直線:不同在任何一個(gè)平面內(nèi)且沒(méi)有公共點(diǎn).

空間中直線與平面位置關(guān)系有且只有三種:直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn)

直線與平面相交有且只有一個(gè)公共點(diǎn)直線與平面平行沒(méi)有公共點(diǎn)

直線與平面相交或平行的情況統(tǒng)稱為直線在平面外.

兩個(gè)平面的位置關(guān)系只有兩種:兩個(gè)平面平行沒(méi)有公共點(diǎn)兩個(gè)平面相交有一條公共直線異面直線所成的角

已知兩條異面直線

,經(jīng)過(guò)空間任一點(diǎn)

作直線

∥,

∥,把

所成的

銳角(或直角)叫做異面直線兩條直線互相垂直,記作

所成的角(夾角).如果兩條異面直線所成的角是直角,就說(shuō)這.

異面直線的判定定理

過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線,和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線.

直線與平面平行的判定定理

平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行.直線與平面平行的性質(zhì)定理

一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線都與該直線平行.兩個(gè)平面平行的判定定理

一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行.

推論:一個(gè)平面內(nèi)兩條相交的直線分別平行于另一個(gè)平面內(nèi)的兩條直線,則這兩個(gè)平面平行.

兩個(gè)平面平行的性質(zhì)定理

如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行.兩個(gè)平面平行,還有如下推論:

⑴如果兩個(gè)平面平行,則一個(gè)平面內(nèi)的任何直線都平行于另外一個(gè)平面;⑵夾在兩個(gè)平行平面內(nèi)的所有平行線段的長(zhǎng)度都相等;

⑶如果一條直線垂直于兩個(gè)平行平面中的一個(gè),那么這條直線也垂直于另一個(gè)平面.⑷如果一條直線和兩個(gè)平行平面中的一個(gè)相交,那么它和另一個(gè)也相交.直線和平面垂直的概念

如果直線與平面.叫做垂線,

內(nèi)的任意一條直線都垂直,就說(shuō)直線與平面叫垂面,它們的交點(diǎn)

叫垂足.

互相垂直,記做

直線和平面垂直的判定定理

一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直.直線與平面所成的角

如圖,直線斜足;

,

和平面

相交但不垂直,

在平面

叫做平面的斜線,

和平面的交點(diǎn)

叫做斜線上的射影.平面的一條斜線和它在平面上的射影

所成的銳角,叫這條直線和平面所成的角.

直線垂直于平面,則它們所成的角是直角;直線和平面平行或在平面內(nèi),則它們所成的角是°角.

兩個(gè)平面垂直的判定定理

一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫二面角的棱,這兩個(gè)半平面叫二面角的面.

在二面角于棱的射線

的棱上任取一點(diǎn),則射線

,以點(diǎn)

為垂足,在半平面

內(nèi)分別作垂直

構(gòu)成的

叫做二面角的平面角.平面角是直角的二面角叫直二面角.

判斷兩平面垂直的方法:判定定理;求出二面角的平面角為直角.三垂線定理:

平面內(nèi)的一條直線,如果和平面的一條斜線的射影垂直,那么它也和這條斜線垂直.如圖:在平面

內(nèi)的直線若垂直于直線

,則就一定垂直于平面

的斜線

.

直線與平面垂直的性質(zhì)定理

垂直于同一個(gè)平面的兩條直線平行.平面與平面垂直的性質(zhì)定理

兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.兩個(gè)平面垂直的性質(zhì)還有:

⑴如果兩個(gè)平面互相垂直,那么經(jīng)過(guò)一個(gè)平面內(nèi)一點(diǎn)且垂直于另外一個(gè)平面的直線,必在這個(gè)平面內(nèi);

⑵如果兩個(gè)相交平面都垂直于另一個(gè)平面,那么這兩個(gè)平面的交線垂直于這個(gè)平面;⑶三個(gè)兩兩垂直的平面,它們的交線也兩兩垂直.

空間平行和垂直關(guān)系的轉(zhuǎn)化

友情提示:本文中關(guān)于《高一數(shù)學(xué)必修2公式定理總結(jié)》給出的范例僅供您參考拓展思維使用,高一數(shù)學(xué)必修2公式定理總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


高一數(shù)學(xué)必修2公式定理總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.7334dd.com/gongwen/441274.html