數學必修五總結
高中數學必修5知識點
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有
abc2R.sinsinsinC2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;
abc②sin,sin,sinC;
2R2R2R③a:b:csin:sin:sinC;
abcabc④.
sinsinsinCsinsinsinC1113、三角形面積公式:SCbcsinabsinCacsin.
2224、余弦定理:在C中,有abc2bccos,bac2accos,
222222c2a2b22abcosC.
b2c2a2a2c2b2a2b2c25、余弦定理的推論:cos,cos,cosC.
2bc2ab2ac6、設a、b、c是C的角、、C的對邊,則:①若abc,則C90;②若abc,則C90;③若abc,則C90.7、數列:按照一定順序排列著的一列數.8、數列的項:數列中的每一個數.9、有窮數列:項數有限的數列.10、無窮數列:項數無限的數列.
11、遞增數列:從第2項起,每一項都不小于它的前一項的數列.12、遞減數列:從第2項起,每一項都不大于它的前一項的數列.13、常數列:各項相等的數列.
14、擺動數列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數列.15、數列的通項公式:表示數列an的第n項與序號n之間的關系的公式.
16、數列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關系的公式.
17、如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,則這個數列稱為等差數列,這個常數稱為等差數列的公差.
18、由三個數a,,b組成的等差數列可以看成最簡單的等差數列,則稱為a與b的等差中項.若b222222222ac,則稱2b為a與c的等差中項.
19、若等差數列
an的首項是a,公差是d,則a1na1n1d.
;ana120、通項公式的變形:①anamnmd;②a1ann1d;③dn1anamana11;⑤d④nnmd.
21、若an是等差數列,且mnpq(m、,則amann、p、q*)(n、p、q*),則2anapaq;若an是等差數列,且2npqapaq.
na1annn1SSnad.22、等差數列的前n項和的公式:①n;②n122S奇anSSndSnaa23、等差數列的前n項和的性質:①若項數為2nn,則2n,nn1,且偶奇S偶an1*.
*②若項數為2n1n,則S2n12n1an,且S奇Sa偶n,S奇n(其中S奇nan,S偶n1an).S偶n124、如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列稱為等比數列,這個常數稱為等比數列的公比.
25、在a與b中間插入一個數G,使a,G,b成等比數列,則G稱為a與b的等比中項.若Gab,則稱G為a與
2b的等比中項.
26、若等比數列an的首項是a1,公比是q,則ana1qn1.
nm27、通項公式的變形:①anamq;②a1anqn1;③qn1annmanq;④.aa1m*28、若an是等比數列,且mnpq(m、n、p、q),則amanapaq;若an是等比數列,且2npq*(n、p、q),則an2apaq.
na1q129、等比數列an的前n項和的公式:Sna11qnaaq.
1nq11q1q30、等比數列的前n項和的性質:①若項數為2nn②Snm
*,則SS偶奇q.
SnqnSm.
③Sn,S2nSn,S3nS2n成等比數列.
31、ab0ab;ab0ab;ab0ab.
32、不等式的性質:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0anbnn,n1;⑧ab0nanbn,n1.
33、一元二次不等式:只含有一個未知數,并且未知數的最高次數是2的不等式.34、二次函數的圖象、一元二次方程的根、一元二次不等式的解集間的關系:
判別式b4ac201*二次函數yaxbxc2a0的圖象有兩個相異實數根一元二次方程axbxc02a0的根ax2bxc0一元二次不等式的解集bx1,22a有兩個相等實數根x1x2x1x2b2a沒有實數根xxx或xx12a0ax2bxc0bxx2aRa0xx1xx235、二元一次不等式:含有兩個未知數,并且未知數的次數是1的不等式.36、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構成有序數對x,y,所有這樣的有序數對x,y構成的集合.
38、在平面直角坐標系中,已知直線xyC0,坐標平面內的點x0,y0.
①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.39、在平面直角坐標系中,已知直線xyC0.
①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.
②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.
40、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標函數:欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數:目標函數為x,y的一次解析式.
線性規(guī)劃問題:求線性目標函數在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.
最優(yōu)解:使目標函數取得最大值或最小值的可行解.
ab稱為正數a、b的算術平均數,ab稱為正數a、b的幾何平均數.2abab.42、均值不等式定理:若a0,b0,則ab2ab,即241、設a、b是兩個正數,則
a2b243、常用的基本不等式:①ab2aba,bR;②aba,bR;
222a2b2abab③aba0,b0;④a,bR.
22244、極值定理:設x、y都為正數,則有
22s2⑴若xys(和為定值),則當xy時,積xy取得最大值.
4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.
擴展閱讀:高一數學知識點總結--必修5
高中數學必修5知識點
第一章:解三角形
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有
asinbsina2RcsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;
②sin,sinb2R,sinCc2R;(正弦定理的變形經常用在有三角函數的等式中)
③a:b:csin:sin:sinC;④
abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.
3、三角形面積公式:SC4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,
cab2abcosC.
2225、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.
6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;
②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.
第二章:數列
1、數列:按照一定順序排列著的一列數.2、數列的項:數列中的每一個數.
3、有窮數列:項數有限的數列.
4、無窮數列:項數無限的數列.
5、遞增數列:從第2項起,每一項都不小于它的前一項的數列.6、遞減數列:從第2項起,每一項都不大于它的前一項的數列.
7、常數列:各項相等的數列.
8、擺動數列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數列.9、數列的通項公式:表示數列an的第n項與序號n之間的關系的公式.
10、數列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關系的公式.
11、如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,則這個數列稱為等差數列,這個
常數稱為等差數列的公差.
12、由三個數a,,b組成的等差數列可以看成最簡單的等差數列,則稱為a與b的等差中項.若
bac2,則稱b為a與c的等差中項.
13、若等差數列an的首項是a1,公差是d,則ana1n1d.
第1頁共6頁
通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;
.14、若an是等差數列,且mnpq(m、n、p、q*),則amanapaq;若an是等差
數列,且2npq(n、p、q*),則2anapaq;下角標成等差數列的項仍是等差數列;連續(xù)m項和構成的數列成等差數列。15、等差數列的前n項和的公式:①Snna1an2;②Snna1nn12d.
16、等差數列的前n項和的性質:①若項數為2nn*,則S2nnanan1,且S偶S奇nd,
S奇S偶anan1.②若項數為2n1n*,則S2n12n1an,且S奇S偶an,
S奇S偶nn1(其中
S奇nan,S偶n1an).
17、如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列稱為等比數列,這個
常數稱為等比數列的公比.
18、在a與b中間插入一個數G,使a,G,b成等比數列,則G稱為a與b的等比中項.若G2ab,則
稱G為a與b的等比中項.
n119、若等比數列an的首項是a1,公比是q,則ana1q.
nm20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.
*21、若an是等比數列,且mnpq(m、n、p、q),則amanapaq;若an是等比數
*列,且2npq(n、p、q),則anapaq;下角標成等差數列的項仍是等比數列;連續(xù)m
2項和構成的數列成等比數列。
na1q122、等比數列an的前n項和的公式:Sna11qnaaq.
1nq11q1qq1時,Sna11qa11qq,即常數項與q項系數互為相反數。
nn23、等比數列的前n項和的性質:①若項數為2nn*,則SS偶奇q.
n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數列.
第2頁共6頁
24、an與Sn的關系:anSnSn1S1n2n1
一些方法:
一、求通項公式的方法:
1、由數列的前幾項求通項公式:待定系數法
①若相鄰兩項相減后為同一個常數設為anknb,列兩個方程求解;
②若相鄰兩項相減兩次后為同一個常數設為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數設為anaq2、由遞推公式求通項公式:
①若化簡后為an1and形式,可用等差數列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;
③若化簡后為an1anq形式,可用等比數列的通項公式代入求解;
④若化簡后為an1kanb形式,則可化為(an1x)k(anx),從而新數列{anx}是等比數列,用等比數列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數法來求得)3、由求和公式求通項公式:
①a1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數寫。4、其他
(1)anan1fn形式,fn便于求和,方法:迭加;
例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數,列兩個方程求解;
n4n1(2)anan12anan1形式,同除以anan1,構造倒數為等差數列;
anan1anan121an1例如:anan12anan1,則
1,即為以-2為公差的等差數列。anan1(3)anqan1m形式,q1,方法:構造:anxqan1x為等比數列;
例如:an2an12,通過待定系數法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構造:anxnyqan1xn1y為等比數列;
nn(5)anqan1p形式,同除p,轉化為上面的幾種情況進行構造;
第3頁共6頁
因為anqan1pn,則
anpnqan1ppn11,若
qp1轉化為(1)的方法,若不為1,轉化為(3)的方
法二、等差數列的求和最值問題:(二次函數的配方法;通項公式求臨界項法)
①若②若ak0,則Sn有最大值,當n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當n=k時取到的最大值k滿足d0a0k1三、數列求和的方法:
①疊加法:倒序相加,具備等差數列的相關特點的,倒序之后和為定值;
②錯位相減法:適用于通項公式為等差的一次函數乘以等比的數列形式,如:an2n13;
n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;
22n12n1④一項內含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:
an2n1等;
n四、綜合性問題中
①等差數列中一些在加法和乘法中設一些數為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數列中一些在加法和乘法中設一些數為aq和aq類型,這樣可以相乘約掉。
第三章:不等式
1、ab0ab;ab0ab;ab0ab.
比較兩個數的大小可以用相減法;相除法;平方法;開方法;倒數法等等。
2、不等式的性質:①abba;②ab,bcac;③abacbc;
④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;
anbn,n1.
3、一元二次不等式:只含有一個未知數,并且未知數的最高次數是2的不等式.
第4頁共6頁
4、二次函數的圖象、一元二次方程的根、一元二次不等式的解集間的關系:
判別式b4ac
201*
二次函數yaxbxc
2a0的圖象
有兩個相異實數根
一元二次方程axbxc0
2有兩個相等實數根
a0的根
axbxc0
一元二次不等式的解集
2x1,2b2a
x1x2b2a
沒有實數根
x1x2
a0axbxc0
2xxx1或xx2
bxx
2aRa0xx1xx2
5、二元一次不等式:含有兩個未知數,并且未知數的次數是1的不等式.6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構成有序數對x,y,所有這樣的有序數對x,y構成的集合.
8、在平面直角坐標系中,已知直線xyC0,坐標平面內的點x0,y0.
①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
9、在平面直角坐標系中,已知直線xyC0.
①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線
xyC0下方的區(qū)域.
②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線
xyC0上方的區(qū)域.
10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.
目標函數:欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數:目標函數為x,y的一次解析式.
線性規(guī)劃問題:求線性目標函數在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.
第5頁共6頁
可行域:所有可行解組成的集合.
最優(yōu)解:使目標函數取得最大值或最小值的可行解.11、設a、b是兩個正數,則
ab稱為正數a、b的算術平均數,ab稱為正數a、b的幾何平均數.
212、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.
13、常用的基本不等式:
①a2b22aba,bR;
22②abab2a,bR;
③abab2a2b2ab22a0,b0;④22a,bR.
14、極值定理:設x、y都為正數,則有
s(和為定值),則當xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.
第6頁共6頁
友情提示:本文中關于《數學必修五總結》給出的范例僅供您參考拓展思維使用,數學必修五總結:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯系我們及時刪除。