第一課時:整式(1)
教學目標和要求:
1.理解單項式及單項式系數(shù)、次數(shù)的概念.
2.會準確迅速地確定一個單項式的系數(shù)和次數(shù).
3.初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識.
4.通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力.
教學重點和難點:
重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準確迅速地確定一個單項式的系數(shù)和次數(shù).難點:單項式概念的建立.
教學過程:
一、復習引入:
1、列代數(shù)式
(數(shù)學教學要緊密聯(lián)系學生的生活實際,這是新課程標準所賦予的任務.讓學生列代數(shù)式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育.)
2、請學生說出所列代數(shù)式的意義.
3、請學生觀察所列代數(shù)式包含哪些運算,有何共同運算特征.
由小組討論后,經(jīng)小組推薦人員回答,教師適當點撥.
(充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,可極大的激發(fā)學生學習的積極性和主動性,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性.)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并歸納得出單項式的概念:由數(shù)與字母的乘積組成的代數(shù)式稱為單項式.然后教師補充,單獨一個數(shù)或一個字母也是單項式,
如a,5.
2.練習:判斷下列各代數(shù)式哪些是單項式?
(1); (2)abc; (3)b2; (4)-5ab2; (5)y;(6)-xy2; (7)-5.
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉(zhuǎn)入單項式的系數(shù)和次數(shù)的教學)
3.單項式系數(shù)和次數(shù):
直接引導學生進一步觀察單項式結(jié)構,總結(jié)出單項式是由數(shù)字因數(shù)和字母因數(shù)兩部分組成的.以
四個單項式a2h,2πr,abc,-m為例,讓學生說出它們的數(shù)字因數(shù)是什么,從而引入單項式系數(shù)的概念并板書,接著讓學生說出以上幾個單項式的字母因數(shù)是什么,各字母指數(shù)分別是多少,從而引入單項式次數(shù)的概念.
單項式的系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).
單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).
4.例題:
例1:判斷下列各代數(shù)式是否是單項式.如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù).①x+1;②;③πr2;④-a2b
答:①不是,因為原代數(shù)式中出現(xiàn)了加法運算;
②不是,因為原代數(shù)式是1與x的商;
③是,它的系數(shù)是π,次數(shù)是2;
④是,它的系數(shù)是-,次數(shù)是3.
例2:下面各題的判斷是否正確?
①-7xy2的系數(shù)是7; ②-x2y3與x3沒有系數(shù); ③-ab 3c2的次數(shù)是0+3+2;
④-a3的系數(shù)是-1;⑤-32x2y3的次數(shù)是7; ⑥πr2h的系數(shù)是.
答:①錯,應是?7;②錯;?x2y3系數(shù)為?1,x3系數(shù)為1;③錯,次數(shù)應該是1+3+2;④正確;⑤錯,次數(shù)為2+3 = 5;⑥正確
強調(diào)應注意以下幾點:
①圓周率π是常數(shù);
②當一個單項式的系數(shù)是1或-1時,“ 1”通常省略不寫,如x2,-a2b等;
③單項式次數(shù)只與字母指數(shù)有關.
5.游戲:
規(guī)則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數(shù)和次數(shù);然后交換,看兩小組哪一組回答得快而準.
(學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識.)
三、課堂小結(jié):
①單項式及單項式的系數(shù)、次數(shù).
②根據(jù)教學過程反饋的信息對出現(xiàn)的問題有針對性地進行小結(jié).
③通過判斷一個單項式的系數(shù)、次數(shù),培養(yǎng)學生理解運用新知識的能力,已達到本節(jié)課的教學目的.
教學后記:
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習.為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結(jié)構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊.
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發(fā)為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎.
第二課時:整式(2)
教學目標和要求:
1.通過本節(jié)課的學習,使學生掌握整式多項式的項及其次數(shù)、常數(shù)項的概念.
2.通過小組討論、合作交流,讓學生經(jīng)歷新知的形成過程,培養(yǎng)比較、分析、歸納的能力.由單項式與多項式歸納出整式,這樣更有利于學生把握概念的內(nèi)涵與外延,有利于學生知識的遷移和知識結(jié)構體系的更新.
3.初步體會類比和逆向思維的數(shù)學思想.
教學重點和難點:
重點:掌握整式及多項式的有關概念,掌握多項式的定義、多項式的項和次數(shù),以及常數(shù)項等概念.
難點:多項式的次數(shù).
教學過程:
一、復習引入:
觀察以上所得出的四個代數(shù)式與上節(jié)課所學單項式有何區(qū)別.
(由學生小組派代表回答,教師應肯定每一位學生說出的特點,培養(yǎng)學生觀察、比較、歸納的能力,同時又鍛煉他們的口表能力.通過特征的講述,由學生自己歸納出多項式的定義,教室可給予適當?shù)奶崾炯把a充.)
二、講授新課:
1.多項式:
由學生自己歸納得出的多項式概念.上面這些代數(shù)式都是由幾個單項式相加而成的.像這樣,幾個單項式的和叫做多項式(polynomial).在多項式中,每個單項式叫做多項式的項(term).其中,不含字母的項,叫做常數(shù)項(constant term).例如,多項式3x2?2x+5有三項,它們是3x2,-2x,5.其中5是常數(shù)項.
一個多項式含有幾項,就叫幾項式.多項式里,次數(shù)最高項的次數(shù),就是這個多項式的次數(shù).例如,多項式3x2?2x+5是一個二次三項式.
注意:
(1)多項式的次數(shù)不是所有項的次數(shù)之和;
(2)多項式的每一項都包括它前面的符號.
(教師介紹多項式的項和次數(shù)、以及常數(shù)項等概念,并讓學生比較多項式的次數(shù)與單項式的次數(shù)的區(qū)別與聯(lián)系,滲透類比的數(shù)學思想.)
2.例題:
例1:判斷:
①多項式a3-a2b+ab2-b3的項為a3、a2b、ab2、b3,次數(shù)為12;
②多項式3n4-2n2+1的次數(shù)為4,常數(shù)項為1.
(這兩個判斷能使學生清楚的理解多項式中項和次數(shù)的概念,第(1)題中第二、四項應為-a2b、-b3,而往往很多同學都認為是a2b和b3,不把符號包括在項中.另外也有同學認為該多項式的次數(shù)為12,應注意:多項式的次數(shù)為最高次項的次數(shù).)
例2:指出下列多項式的項和次數(shù):
(1)3x-1+3x2;(2)4x3+2x-2y2.
解:(1)三項,二次;(2)三項,三次.
例3:指出下列多項式是幾次幾項式.
(1)x3-x+1;(2)x3-2x2y2+3y2.
解:(1)三次三項式;(2)四次三次式.
例4:已知代數(shù)式3xn-(m-1)x+1是關于x的三次二項式,求m、n的條件.
解:該多項式中的項次數(shù)分別為n、1和常數(shù),又多項式為三次,即n = 3;而該多項式至少有兩項3xn和1,當m?1≠0時,該多項式即為三項式,與已知不符,所以m = 1.
(讓學生口答例2、例3,老師在黑板上規(guī)范書寫格式.講述例2時應特別提醒學生注意,多項式的項包括前面的符號,多項式的次數(shù)應為最高次項的次數(shù).在例3講完后插入整式的定義:單項式與多項式統(tǒng)稱整式(integral expression).例4分析時要緊扣多項式的定義,培養(yǎng)學生的逆向思維,使學生透徹理解多項式的有關概念,培養(yǎng)他們應用新知識解決問題的能力.)
三、課堂小結(jié):
①理解多項式的定義,能說出一個多項式是幾次幾項式,最高次數(shù)是幾,分別由哪幾項組成,各項的系數(shù)分別為多少,常數(shù)項為幾.
②這堂課學習了多項式,與前一節(jié)所學單項式合起來統(tǒng)稱為整式,使知識形成了系統(tǒng).(讓學生小結(jié),師生進行補充.)
教學后記:
從學生已掌握的列代數(shù)式入手,既復習了所學知識,又巧妙的引入了新知,介紹多項式的項、次數(shù)以及常數(shù)項的概念后,引導學生循序漸進,一步一步的接近本節(jié)課學習的重點、難點.掌握了所有的概念后由學生自己舉一些多項式的例子,這樣更能反映出學生掌握知識的程度,同時也體現(xiàn)了學生學習的主體性.最后列舉幾個例子,與學生一起完成.教學中一方面教師要示范嚴格的書寫格式,另一方面也可使學生順著教師的思路,體驗一下老師是如何想的,如何來考慮問題的,然后由學生完成當堂課的練習,也可讓一兩位同學上黑板完成.要了解學生是否真正掌握本節(jié)課的內(nèi)容,可由學生自己進行課堂小結(jié),接著布置作業(yè)進一步鞏固本課所學知識.
第二篇:人教版七年級數(shù)學上冊教案之角教案角
一、教學目標
1、知識與技能:
(1)在現(xiàn)實中,認識角是一種基本的幾何圖形,理解角的概念,掌握角
的表示方法。
(2)認識角的度量單位度、分、秒,能根據(jù)角的度量比較角的大小,熟
練進行角的換算。
2、能力目標:培養(yǎng)學生的抽象概括能力,增強應用數(shù)學的意識。
3、情感目標:通過豐富的圖形世界進一步理解角的有關概念,感受數(shù)學與生活
的密切聯(lián)系,積極參與數(shù)學學習活動。
4、過程與方法:提高學生的識圖的能力,學會用運動變化的觀點看問題。
二、教學重點、難點 關鍵
1、教學重點:角的概念、表示方法及角度制的換算
2、教學難點:角的表示方法、角度制的換算
3、關鍵:學會觀察圖形是正確表示一個角的關鍵
三、學情分析
角是幾何初步知識中比較抽象的概念,學生在小學已經(jīng)初步接觸了角的有關知識,對角的概念、比較、度量有了初步的認識。按照教學目標要求,這節(jié)課將進一步對角的概念、比較和度量進行規(guī)范。培養(yǎng)學生觀察、比較、概括能力,借此引導學生在已有的生活經(jīng)驗和知識的基礎上學習數(shù)學,理解數(shù)學,體會數(shù)學與 生活的關系。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。本節(jié)課設計的教學方法是采用引導發(fā)現(xiàn)法,輔之以討論法
四、教學準備
為了提高課堂教學效率,激發(fā)學生學習興趣,培養(yǎng)學生的空間想象力,本節(jié)課采用的是直觀教學手段,充分利用多媒體演示,便于學生理解和掌握。
五、教學用具:量角器
六、教學過程
(一)引入新課
1多媒體放映一些生活中圖形:時鐘,教堂,足球射門請生觀察。
2 提出問題:
時鐘的分針和時針,教堂的屋頂,足球與門框,都給我們怎樣的平面圖形的形象?請把它們畫出來。
學生活動:進行獨立思考,畫出一個角,然后觀看教師的演示過程。
(二)活動探究,建構新知
活動一
角的概念
師:我們?nèi)绾谓o角下定義?請大家根據(jù)自己的理解給角下一個定義。 生:角的兩種定義:
a、 角是由兩條具有公共端點的射線組成的圖形,兩條射線的公共端點上一這個角的頂點,這兩條射線是這個角的邊;
b、角也可以看成由一條射線繞著它的端點旋轉(zhuǎn)而成的圖形。
(學生小組活動思考討論,組內(nèi)統(tǒng)一意見,代表發(fā)言,最后比較各答案得出準確定義。學生對角的概念已初步接觸過,讓學生進一步加深對角的概念的理解,培養(yǎng)學生抽象概括能力以及語言的表達能力。但由于學生的語言表達能力還不是太強,教師可進行適當?shù)募m正、歸納)
活動二
角的表示
師:如何表示一個角?請同學們閱讀課本第136面在關內(nèi)容,歸納角的表示方法(小組內(nèi)討論互助)
生:角的表示方法有:
1、角的符號+三個大寫字母,如:∠aob
2、角的符號+一個大寫字母,如:∠o
(頂點處只有一個角時)
3、角的符號+數(shù)字如:∠1
4、角的符號+希臘字母如∠α
師:在用這些方法表示角的時候應該注意些什么呢?
生:用“角的符號+三個大寫字母”表示角的時候要用大寫字母,頂點的字母應該寫在中間;在頂點處只有一個角時,才可以用一個大寫的字母表示。
師:老師再告訴大家一個細節(jié):用數(shù)字或希臘字母表示角的時候,要在角上畫一個小弧形。另外在角的表示中不能丟了前面角的符號。
(在課堂教學中,教師應該充分相信學生,讓學生在課堂上有充分的活動空間和時間,形成學生自我尋求發(fā)展的愿望,充分發(fā)揮他們的自主精神。當然,學生在歸納、表述的時候會出現(xiàn)不正確、思維不太嚴謹?shù)牡胤,教師可給于適當?shù)囊龑、糾正)
嘗試應用,反饋矯正
師:請(謝謝你訪問好范文m.7334dd.comil;的手續(xù)費,賣出時又付成交額4‰的手續(xù)費和3‰的交易稅,如果小錢在本周末以收盤價賣出全部股票,他的收益如何?
9.小京同學在計算16+(-24)+22+(-17)+(-56)+56時, 利用加法交換律、結(jié)合律先把正負數(shù)分別相加,得16+22+56+[(-24)+(-17)+(-56)].你認為這樣算能使運算簡便嗎?你認為還有其它方法嗎?
10.用簡便方法計算:
(1)1033.78+(-26)+(-39)+(-38); (2)12.7+(-24.6)+(-29.1)+6.8;
(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7; (4)(-109)+(-267)+(+108)+268;
第五篇:人教七年級數(shù)學上冊教案人教版-1.3.1有理數(shù)的加法(2)1.3.1有理數(shù)的加法(2)授課時間:____________
【教學目標】
1.進一步理解有理數(shù)加法的實際意義;
2.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)加法法則;
3.感受數(shù)學模型的思想;
4.養(yǎng)成認真計算的習慣.
【對話探索設計】
〖探索1〗
1.第一天贏利,第二天還贏利,兩天合起來算,是贏利還是虧本?
2.第一天虧本,第二天還是虧本,兩天合起來算,是贏利還是虧本?
3.一個物體作左右方向的運動,規(guī)定向右為正.如果物體先向左運動,再向左運動, 那么兩次運動后總的結(jié)果是什么?
假設原點為運動起點,用數(shù)軸檢驗你的答案.
〖法則理解〗
有理數(shù)加法法則第1條是:同號兩數(shù)相加,取___________,并把絕對值_________. 這條法則包括兩種情況:
(1)兩個正數(shù)相加,顯然取正號,并把絕對值相加,例(+3)+(+5)=+8;
(2)兩個負數(shù)相加,取_____號,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案"-8"之所以取"-"號,是因為______________,"8"是由_____的絕對值和______的絕對值相______而得. 〖練習〗
1.上午6時的氣溫是,下午5時的氣溫比上午6時下降, 下午5時的氣溫是多少?
2.第一場比賽紅隊勝黃隊5:2,第二場比賽藍隊勝黃隊3:1, 兩場比賽黃隊凈勝幾個球?
3.第一天向北走,第二天又向北走,兩天一共向北走多少km?
4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200) =
(3)(-188)+(-309)=
〖探索2〗
1.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?如果第二天虧本120元呢?
2.第一天贏利,第二天虧本,兩天合起來算,是贏利還是虧本?
3.正數(shù)和負數(shù)相加,結(jié)果是正數(shù)還是負數(shù)?
〖法則理解〗
有理數(shù)加法法則第2條的前半部分是:絕對值不相等的異號兩數(shù)相加,取_________________的符號,并用_______________減去_________________.
例如(+6)+(-2) = +(6-2) = +4.答案"+4"之所以取"+"號,是因為兩個加數(shù)(+6與-2)中________的絕對值較大;答案"+4"的絕對值4是由加數(shù)中較大的絕對值______減去較小的絕對值____得到.
又例,計算(-8)+(+3)時,先取______號,這是因為兩個加數(shù)中,______的絕對值較大.然后再用較大的絕對值____減去較小的絕對值____,得_____,于是最后得到答案是______.計算的過程可以寫成(-8)+(+3) = -(8-3) = -5.
〖議一議〗
有人說,正數(shù)和負數(shù)相加時,實質(zhì)就是把加法運算轉(zhuǎn)化為”小學”的減法運算.他說的對不對?
〖練習〗
1.第一場比賽紅隊勝黃隊5:2,第二場比賽黃隊勝藍隊3:1, 兩場比賽黃隊凈勝幾個球?
2.如果物體先向右運動,再向右運動,那么兩次運動后總的結(jié)果是什么?
3. 檢查3包洗衣粉的重量(單位:克), 把其中超過標準重量的數(shù)量記為正數(shù),不足的數(shù)量記作負數(shù),結(jié)果如下:
-3.5,+1.2,-2.7.
這3包洗衣粉的重量一共超過標準重量多少?
4.仿照(-8)+(+3) =-(8-3) = -5的格式解題:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法則理解〗
有理數(shù)加法法則第2條的后半部分是:互為相反數(shù)的兩個數(shù)相加得_____.
例如(+3)+(-3) = ______,(-108)+(+108) = ______.
〖例題學習〗
p21.例1,例2
p22.練習2(按例1格式算.)
〖作業(yè)〗
p29.習題 1, p32.習題 8,9,10
【備選素材】
用一個□表示+1,用一個■表示-1.顯然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+ □=_____.
這表明-2+3=+(3-2)=1.
想一想:答案為什么是正的?為什么轉(zhuǎn)化為減法運算?
(2)計算■■■■■+□□□□□=_____.
(3)計算■■■■■+□□=(■■+□□)+ ■■■=______.
這說明-5+(+2)=-(___-___)=_______.
(4)計算■■■+□□□□□=?
adiwan小編推薦其他精彩范文:人教七年級數(shù)學上冊教案人教版-1.4.1 有理數(shù)的乘法(1)
人教七年級數(shù)學上冊教案人教版-1.3.1有理數(shù)的加法(1)
人教七年級數(shù)學上冊教案人教版-1.2.1 有理數(shù)
人教版七年級數(shù)學上冊教案之有理數(shù)的乘除法
人教版七年級數(shù)學上冊教案之整式的加減法
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。